|
|
镍基高温合金表面冲击强化机制及应用研究进展 |
王磊1( ), 刘梦雅1, 刘杨1( ), 宋秀1, 孟凡强2 |
1东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819 2中山大学 中法核工程与技术学院 珠海 519000 |
|
Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys |
WANG Lei1( ), LIU Mengya1, LIU Yang1( ), SONG Xiu1, MENG Fanqiang2 |
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China 2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China |
引用本文:
王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
Lei WANG,
Mengya LIU,
Yang LIU,
Xiu SONG,
Fanqiang MENG.
Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1173-1189.
1 |
Ren X P, Liu Z Q. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy [J]. Int. J. Miner., Metall. Mater., 2018, 25: 937
doi: 10.1007/s12613-018-1643-2
|
2 |
Stinville J C, Callahan P G, Charpagne M A, et al. Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation [J]. Acta Mater., 2020, 186: 172
doi: 10.1016/j.actamat.2019.12.009
|
3 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
|
4 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600oC [J]. Int. J. Fatigue, 2018, 114: 120
doi: 10.1016/j.ijfatigue.2018.05.021
|
5 |
Telesman J, Gabb T P, Kantzos P T, et al. Effect of broaching machining parameters, residual stresses and cold work on fatigue life of Ni-based turbine disk P/M alloy at 650oC [J]. Int. J. Fatigue, 2021, 150: 106328
doi: 10.1016/j.ijfatigue.2021.106328
|
6 |
Zangeneh S, Lashgari H R, Asnavandi M. The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy [J]. Eng. Failure Anal., 2018, 84: 276
doi: 10.1016/j.engfailanal.2017.11.018
|
7 |
Zhang P Y, Zhou X, Wang X D, et al. Study on the microstructural degradation and rejuvenation heat treatment of directionally solidified turbine blades [J]. J. Alloys Compd., 2020, 829: 154474
doi: 10.1016/j.jallcom.2020.154474
|
8 |
Vikram R J, Singh A, Suwas S, et al. Effect of heat treatment on the modification of microstructure of selective laser melted (SLM) IN718 and its consequences on mechanical behavior [J]. J. Mater. Res., 2020, 35: 1949
doi: 10.1557/jmr.2020.129
|
9 |
Deng H Z, Wang L, Liu Y, et al. The evolution law of δ phase of IN718 superalloy in temperature/stress coupled field [J]. Mater. Charact., 2022, 184: 111684
doi: 10.1016/j.matchar.2021.111684
|
10 |
An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
|
11 |
Tomevenya K M, Liu S J. Probabilistic fatigue-creep life reliability assessment of aircraft turbine disk [J]. J. Mech. Sci. Technol., 2018, 32: 5127
doi: 10.1007/s12206-018-1010-2
|
12 |
Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718 [J]. Mater. Sci. Eng., 2021, A810: 141029
|
13 |
Qin Z, Li B, Chen R, et al. Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys [J]. Int. J. Fatigue, 2023, 168: 107429
doi: 10.1016/j.ijfatigue.2022.107429
|
14 |
Yang J, Liu D X, Fan K F, et al. Designing a gradient structure in a Ni-based superalloy to improve fretting fatigue resistance at elevated temperatures through an ultrasonic surface rolling process [J]. Int. J. Fatigue, 2023, 168: 107397
doi: 10.1016/j.ijfatigue.2022.107397
|
15 |
Wu J J, Huang Z, Qiao H C, et al. Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network [J]. J. Cent. South Univ., 2022, 29: 3346
doi: 10.1007/s11771-022-5158-7
|
16 |
Gu H Q, Yan P, Jiao L, et al. Effect of laser shock peening on boring hole surface integrity and conformal contact fretting fatigue life of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2023, 166: 107241
doi: 10.1016/j.ijfatigue.2022.107241
|
17 |
Zhang H P, Cai Z Y, Chi J X, et al. Microstructural evolution, mechanical behaviors and strengthening mechanism of 300 M steel subjected to multi-pass laser shock peening [J]. Opt. Lasers Technol., 2022, 148: 107726
doi: 10.1016/j.optlastec.2021.107726
|
18 |
Wang C Y, Luo Y K, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plast., 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
|
19 |
Liu Y, Wang L, Yang K Y, et al. Effects of thermally assisted warm laser shock processing on the microstructure and fatigue property of IN718 superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1645
doi: 10.1007/s40195-021-01340-z
|
20 |
Lin C H, Wu H B, Li Z G, et al. Evaluation of oblique laser shock peening effect of FGH95 superalloy turbine disk material [J]. Mater. Today Commun., 2022, 31: 103534
|
21 |
Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
doi: 10.1016/j.corsci.2021.109419
|
22 |
Qiao Y, Guo P Q, Chen H T, et al. Roughness prediction model of face milling surface for nickel-based superalloy FGH97 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 562: 012154
|
23 |
Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review [J]. Int. J. Fatigue, 2020, 141: 105887
doi: 10.1016/j.ijfatigue.2020.105887
|
24 |
Xu C, Yao Z H, Dong J X, et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy [J]. Rare Met., 2019, 38: 642
doi: 10.1007/s12598-018-1123-x
|
25 |
Zhang X S, Ma Y E, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials [J]. Theor. Appl. Mech., 2022, 122: 103642
|
26 |
Child D J, West J D, Thomson R C. Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques [J]. Acta Mater., 2011, 59: 4825
doi: 10.1016/j.actamat.2011.04.025
|
27 |
Zhong L Q, Liang Y L, Hu H. Study on plastic deformation characteristics of shot peening of Ni-based superalloy GH4079 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012041
|
28 |
Zhong L Q, Liang Y L, Yan Z, et al. Effect of shot peening on high cycle fatigue limit of FGH4097 P/M superalloys at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2198
|
28 |
钟丽琼, 梁益龙, 严 振 等. 喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响 [J]. 稀有金属材料与工程, 2018, 47: 2198
|
29 |
Kumar D, Idapalapati S, Wang W, et al. Microstructure-mechanical property correlation in shot peened and vibro-peened Ni-based superalloy [J]. J. Mater. Process. Technol., 2019, 267: 215
doi: 10.1016/j.jmatprotec.2018.12.007
|
30 |
Wang X, Xu C L, Wang X F, et al. Turning/shot peening of nickel-based powder metallurgy superalloy: Effect on surface integrity and high-temperature low-cycle fatigue properties [J]. Int. J. Fatigue, 2023, 166: 107291
doi: 10.1016/j.ijfatigue.2022.107291
|
31 |
Gao Y K, Zhong Z, Lei L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy [J]. Rare Met. Mater. Eng., 2016, 45: 1230
|
31 |
高玉魁, 仲 政, 雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 1230
|
32 |
Luo X K, Zhang W C, Wu B, et al. Effect of combination of laser shock peening and shot peening on surface integrity and fatigue property of K4169 casting alloy [J]. Aeron. Manuf. Technol., 2022, 65(11): 57
|
32 |
罗学昆, 张文灿, 吴 波 等. 激光冲击/喷丸复合强化对K4169铸造合金的表面完整性和疲劳性能的影响 [J]. 航空制造技术, 2022, 65(11): 57
|
33 |
Zhao X H, Zhou H Y, Liu Y. Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature [J]. Results Phys., 2018, 11: 452
doi: 10.1016/j.rinp.2018.09.047
|
34 |
Klotz T, Delbergue D, Bocher P, et al. Surface characteristics and fatigue behavior of shot peened Inconel 718 [J]. Int. J. Fatigue, 2018, 110: 10
doi: 10.1016/j.ijfatigue.2018.01.005
|
35 |
Dong C L, Yang S K, Peng Z C. Effect of shot peening on notched fatigue performance of powder metallurgy Udimet 720Li superalloy [J]. Intermetallics, 2021, 135: 107226
doi: 10.1016/j.intermet.2021.107226
|
36 |
Shen X J, Wang C, Sun D, et al. Comparison research on mechanical properties of high temperature alloy after laser peened and ultrasonically peened [J]. Appl. Mech. Mater., 2014, 670-671: 46
doi: 10.4028/www.scientific.net/AMM.670-671
|
37 |
Chen Y X, Wang J C, Gao Y K, et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy [J]. Int. J. Fatigue, 2019, 127: 53
doi: 10.1016/j.ijfatigue.2019.05.034
|
38 |
Luo J, Bowen P. Effects of temperature and shot peening on S-N behavior of a PM Ni-base superalloy UDIMET 720 [J]. Metall. Mater. Trans., 2004, 35A: 1007
|
39 |
Wu D X, Yao C F, Zhang D H. Surface characterization and fatigue evaluation in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatments [J]. Int. J. Fatigue, 2018, 113: 222
doi: 10.1016/j.ijfatigue.2018.04.009
|
40 |
Sun Z Y, Ye Y D, Xu J B, et al. Effect of electropulsing on surface mechanical behavior and microstructural evolution of Inconel 718 during ultrasonic surface rolling process [J]. J. Mater. Eng. Perform., 2019, 28: 6789
doi: 10.1007/s11665-019-04443-y
|
41 |
Jiang H, Li L H, Dong J X, et al. Microstructure-based hot extrusion process control principles for nickel-base superalloy pipes [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 391
doi: 10.1016/j.pnsc.2018.04.009
|
42 |
Wang X, Hu R G, Hu B, et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure [J]. J. Aerosp. Power, 2017, 32: 89
|
42 |
王 欣, 胡仁高, 胡 博 等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响 [J]. 航空动力学报, 2017, 32: 89
|
43 |
Luo X K, Wang X, Hu R G, et al. Effects of hole cold expansion on fatigue property of Inconel 718 superalloy [J]. China Surf. Eng., 2016, 29(3): 116
|
43 |
罗学昆, 王 欣, 胡仁高 等. 孔挤压强化对Inconel 718高温合金疲劳性能的影响 [J]. 中国表面工程, 2016, 29(3): 116
|
44 |
Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy [J]. Int. J. Fatigue, 2020, 133: 105373
doi: 10.1016/j.ijfatigue.2019.105373
|
45 |
Yin M G, Cai Z B, Zhang Z X, et al. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy [J]. Tribol. Int., 2020, 147: 105600
doi: 10.1016/j.triboint.2019.02.008
|
46 |
Sun Z Y, Zhang Y F, Zhao X J, et al. Effect of electropulsing on the surface mechanical behavior of GH4169 during ultrasonic surface rolling process [J]. Ordnance Mater. Sci. Eng., 2021, 44(3): 33
|
46 |
孙智妍, 张雲飞, 赵秀娟 等. 电脉冲对GH4169超声滚压表面性能的影响 [J]. 兵器材料科学与工程, 2021, 44(3): 33
|
47 |
Ermakova A, Braithwaite J, Razavi J, et al. The influence of laser shock peening on corrosion-fatigue behaviour of wire arc additively manufactured components [J]. Surf. Coat. Technol., 2023, 456: 129262
doi: 10.1016/j.surfcoat.2023.129262
|
48 |
Tan Q, Yan Z R, Huang H, et al. Surface integrity and oxidation of a powder metallurgy Ni-based superalloy treated by laser shock peening [J]. JOM, 2020, 72: 1803
doi: 10.1007/s11837-020-04054-2
|
49 |
Rozmus-Górnikowska M, Kusiński J, Cieniek Ł. Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer [J]. J. Mater. Eng. Perform., 2020, 29: 1544
doi: 10.1007/s11665-020-04667-3
|
50 |
Cao J D, Zhang J S, Hua Y Q, et al. Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing [J]. J. Wuhan Univ. Technol.—Mater. Sci. Ed., 2017, 32: 1186
|
51 |
Luo S H, Nie X F, Zhou L C, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy [J]. Surf. Coat. Technol., 2017, 311: 337
doi: 10.1016/j.surfcoat.2017.01.031
|
52 |
Liu Y, Wang L, Yang K Y, et al. Characteristics of microstructure evolution of surface treated IN718 superalloy by warm laser shock peening during long-term aging at high temperatures [J]. Mater. Charact., 2022, 193: 112261
doi: 10.1016/j.matchar.2022.112261
|
53 |
Pan X L, Guo S Q, Tian Z, et al. Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc [J]. Surf. Coat. Technol., 2021, 409: 126829
doi: 10.1016/j.surfcoat.2021.126829
|
54 |
Mythreyi O V, Nagesha B K, Jayaganthan R. Microstructural evolution & corrosion behavior of laser-powder-bed-fused Inconel 718 subjected to surface and heat treatments [J]. J. Mater. Res. Technol., 2022, 19: 3201
doi: 10.1016/j.jmrt.2022.05.123
|
55 |
Orozco-Caballero A, Jackson T, da Fonseca J Q. High-resolution digital image correlation study of the strain localization during loading of a shot-peened RR1000 nickel-based superalloy [J]. Acta Mater., 2021, 220: 117306
doi: 10.1016/j.actamat.2021.117306
|
56 |
Morançais A, Fèvre M, François M, et al. Residual stress determination in a shot-peened nickel-based single-crystal superalloy using X-ray diffraction [J]. J. Appl. Crystallogr., 2015, 48: 1761
doi: 10.1107/S1600576715017689
|
57 |
Goulmy J P, Kanoute P, Rouhaud E, et al. A calibration procedure for the assessment of work hardening Part II: Application to shot peened IN718 parts [J]. Mater. Charact., 2021, 175: 111068
doi: 10.1016/j.matchar.2021.111068
|
58 |
Salvati E, Lunt A J G, Heason C P, et al. An analysis of fatigue failure mechanisms in an additively manufactured and shot peened IN 718 nickel superalloy [J]. Mater. Des., 2020, 191: 108605
doi: 10.1016/j.matdes.2020.108605
|
59 |
Gibson G J, Perkins K M, Gray S, et al. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li [J]. Mater. High Temp., 2016, 33: 225
doi: 10.1080/09603409.2016.1161945
|
60 |
Song D Y, Luo Z P, Yang Y R, et al. Microstructure of the hole expansion strengthened layer of high temperature alloy GH169 [J]. Acta Aeronaut. Astronaut. Sin., 1996, 17(1): 123
|
60 |
宋德玉, 罗治平, 杨玉荣 等. GH169高温合金孔挤压强化层的微观结构 [J]. 航空学报, 1996, 17(1): 123
|
61 |
Messé O M D M, Stekovic S, Hardy M C, et al. Characterization of plastic deformation induced by shot-peening in a Ni-base superalloy [J]. JOM, 2014, 66: 2502
doi: 10.1007/s11837-014-1184-8
|
62 |
Wang D L, Li J B, Jin T, et al. Fatigue-life improvement of K417 alloy by shot peening and recrystallization [J]. Rare Met. Mater. Eng., 2006, 35: 1294
|
62 |
王东林, 李家宝, 金 涛 等. 利用喷丸再结晶方法提高K417合金的疲劳寿命 [J]. 稀有金属材料与工程, 2006, 35: 1294
|
63 |
Ren X D. Laser Impact Peening of High Temperature Service Materials [M]. Beijing: Science Press, 2014: 11
|
63 |
任旭东. 高温服役材料激光冲击强化技术 [M]. 北京: 科学出版社, 2014: 11
|
64 |
Yu Y Q, Gong J N, Fang X Y, et al. Comparison of surface integrity of GH4169 superalloy after high-energy, low-energy, and femtosecond laser shock peening [J]. Vacuum, 2023, 208: 111740
doi: 10.1016/j.vacuum.2022.111740
|
65 |
Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Lasers Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
|
66 |
Wang Y F, Zhu Y T, Wu X L, et al. Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure [J]. Sci. China Mater., 2021, 64: 3114
doi: 10.1007/s40843-021-1702-2
|
67 |
Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
doi: 10.1126/sciadv.aba8169
|
68 |
Sun G S, Liu J Z, Zhu Y T. Heterostructure alleviates Lüders deformation of ultrafine-grained stainless steels [J]. Mater. Sci. Eng., 2022, A848: 143393
|
69 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
70 |
Ding R, Yang Z G, van der Zwaag S, et al. How chemical boundary engineering can produce cheap, ultra-strong steels [J]. Proc. Inst. Civil Eng.—Civil Eng., 2020, 173: 102
|
71 |
Altinkurt G, Fèvre M, Geandier G, et al. Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue microdiffraction [J]. J. Mater. Sci., 2018, 53: 8567
doi: 10.1007/s10853-018-2144-4
|
72 |
Salvati E, Lunt A J G, Ying S, et al. Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor blade [J]. Comput. Methods Appl. Mech. Eng., 2017, 320: 335
doi: 10.1016/j.cma.2017.03.005
|
73 |
Buchanan D J, John R. Residual stress redistribution in shot peened samples subject to mechanical loading [J]. Mater. Sci. Eng., 2014, A615: 70
|
74 |
Zhu L H, Fan X L, Xiao L, et al. Influence of shot peening on the microstructure and high-temperature tensile properties of a powder metallurgy Ni-based superalloy [J]. J. Mater. Sci., 2023, 58: 2838
doi: 10.1007/s10853-023-08182-3
|
75 |
Yang J, Liu D X, Ren Z C, et al. Grain growth and fatigue behaviors of GH4169 superalloy subjected to excessive ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2022, A839: 142875
|
76 |
Lesyk D A, Dzhemelinskyi V V, Martinez S, et al. Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6982
doi: 10.1007/s11665-021-06103-6
|
77 |
Li L, Liu D J. Complete dissolution of gamma prime via severe plastic deformation in a precipitation-hardened nickel-base superalloy [J]. Mater. Lett., 2021, 284: 128607
doi: 10.1016/j.matlet.2020.128607
|
78 |
Colliander M H, Sundell G, Thuvander M. Complete precipitate dissolution during adiabatic shear localisation in a Ni-based superalloy [J]. Philos. Mag. Lett., 2020, 100: 561
doi: 10.1080/09500839.2020.1820595
|
79 |
Liao Z R, Polyakov M, Diaz O G, et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation—Mechanical machining case [J]. Acta Mater., 2019, 180: 2
doi: 10.1016/j.actamat.2019.08.059
|
80 |
Takizawa Y, Sumikawa K, Watanabe K, et al. Incremental feeding high-pressure sliding for grain refinement of large-scale sheets: Application to Inconel 718 [J]. Metall. Mater. Trans., 2018, 49A: 1830
|
81 |
Liu Y, Wang L, Yang K Y, et al. Mechanism for superior fatigue performance of warm laser shock peened IN718 superalloy after high-temperature ageing [J]. J. Alloys Compd., 2022, 923: 166340
doi: 10.1016/j.jallcom.2022.166340
|
82 |
Buchanan D J, Shepard M J, John R. Retained residual stress profiles in a laser shock‐peened and shot‐peened nickel base superalloy subject to thermal exposure [J]. Int. J. Struct. Integr., 2011, 2: 34
doi: 10.1108/17579861111108590
|
83 |
Lu Y, Yang Y L, Zhao J B, et al. Impact on mechanical properties and microstructural response of nickel-based superalloy GH4169 subjected to warm laser shock peening [J]. Materials, 2020, 13: 5172
doi: 10.3390/ma13225172
|
84 |
Lu G X, Jin T, Zhou Y Z, et al. Research progress of applications of laser shock processing on superalloys [J]. Chin. J. Nonferrous Met., 2018, 28: 1755
doi: 10.1016/S1003-6326(18)64819-8
|
84 |
卢国鑫, 金 涛, 周亦胄 等. 激光冲击强化在高温合金材料应用上的研究进展 [J]. 中国有色金属学报, 2018, 28: 1755
|
85 |
Chin K S, Idapalapati S, Ardi D T. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59: 100
doi: 10.1016/j.jmst.2020.03.059
|
86 |
Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy [J]. Exp. Mech., 2014, 54: 1597
doi: 10.1007/s11340-014-9940-9
|
87 |
Gill A, Telang A, Mannava S R, et al. Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy [J]. Mater. Sci. Eng., 2013, A576: 346
|
88 |
Gill A S, ZhouZ., Lienert U, et al. High spatial resolution, high energy synchrotron X-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy [J]. J. Appl. Phys., 2012, 111: 084904
|
89 |
Wang H M, Sun X J, Li X X. Laser shock processing of an austenitic stainless steel and a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2003, 19: 402
|
90 |
Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
|
91 |
Zhou G N, Zhang Y B, Pantleon W, et al. Quantification of room temperature strengthening of laser shock peened Ni-based superalloy using synchrotron microdiffraction [J]. Mater. Des., 2022, 221: 110948
doi: 10.1016/j.matdes.2022.110948
|
92 |
Lu Y, Zhao J B, Qiao H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Adv., 2019, 9: 085030
|
93 |
Xiang S, Liu X T, Xu R, et al. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation [J]. Acta Mater., 2023, 242: 118436
doi: 10.1016/j.actamat.2022.118436
|
94 |
Lin C H, Tang Y, Yu L W, et al. Oblique laser shock peening effect of the FGH95 superalloy with a PCA and comprehensive index [J]. Appl. Opt., 2022, 61: 2690
doi: 10.1364/AO.450877
pmid: 35471349
|
95 |
Gill A S, Telang A, Ye C, et al. Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF [J]. Mater. Charact., 2018, 142: 15
doi: 10.1016/j.matchar.2018.05.010
|
96 |
Luo S H, He W F, Zhou L C, et al. Aluminizing mechanism on a nickel-based alloy with surface nanostructure produced by laser shock peening and its effect on fatigue strength [J]. Surf. Coat. Technol., 2018, 342: 29
doi: 10.1016/j.surfcoat.2018.02.083
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|