| 
					引用本文:
						|  |  
    					|  |  
    					| 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响 |  
						| 王楠1, 陈永楠1(  ), 赵秦阳1, 武刚2, 张震1, 罗金恒2 |  
					| 1.长安大学 材料科学与工程学院 西安 710064 2.中国石油集团石油管工程技术研究院 西安 710077
 |  
						|  |  
    					| Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel |  
						| WANG Nan1, CHEN Yongnan1(  ), ZHAO Qinyang1, WU Gang2, ZHANG Zhen1, LUO Jinheng2 |  
						| 1.School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China 2.CNPC Tubular Goods Research Institute, Xi'an 710077, China
 |  
								王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.	
																												Nan WANG,
																								Yongnan CHEN,
																								Qinyang ZHAO,
																								Gang WU,
																								Zhen ZHANG,
																												Jinheng LUO. 
				Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. Acta Metall Sin, 2023, 59(10): 1299-1310.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | Tan X D, Ponge D, Lu W J, et al. Carbon and strain partitioning in a quenched and partitioned steel containing ferrite [J]. Acta Mater., 2019, 165: 561 doi: 10.1016/j.actamat.2018.12.019
 |  
																| 2 | Han Q N, Rui S S, Qiu W H, et al. Crystal orientation effect on fretting fatigue induced geometrically necessary dislocation distribution in Ni-based single-crystal superalloys [J]. Acta Mater., 2019, 179: 129 doi: 10.1016/j.actamat.2019.08.035
 |  
																| 3 | Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, A759: 624 |  
																| 4 | Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348 |  
																| 5 | Kratochvíl J, Kružík M, Sedláček R. Instability origin of subgrain formation in plastically deformed materials [J]. Int. J. Eng. Sci., 2010, 48: 1401 doi: 10.1016/j.ijengsci.2010.09.017
 |  
																| 6 | Wang N, Chen Y N, Wu G, et al. Investigation on micromechanism involved in ferrite hardening after prestraining of dual-phase steel [J]. Mater. Sci. Eng., 2021, A800: 140387 |  
																| 7 | Dai Q F, Song R B, Fan W Y, et al. Behaviour and mechanism of strain hardening for dual phase steel DP1180 under high strain rate deformation [J]. Acta Metall. Sin., 2012, 48: 1160 doi: 10.3724/SP.J.1037.2012.00364
 |  
																| 7 | 代启锋, 宋仁伯, 范午言 等. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制 [J]. 金属学报, 2012, 48: 1160 |  
																| 8 | Shakerifard B, Lopez J G, Legaza M C T, et al. Strain rate dependent dynamic mechanical response of bainitic multiphase steels [J]. Mater. Sci. Eng., 2019, A745: 279 |  
																| 9 | Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159 doi: 10.3724/SP.J.1037.2012.00515
 |  
																| 9 | 董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159 |  
																| 10 | Kundu A, Field D P, Chakraborti P C. Effect of strain and strain rate on the development of deformation heterogeneity during tensile deformation of a solution annealed 304 LN austenitic stainless steel: An EBSD study [J]. Mater. Sci. Eng., 2020, A773: 138854 |  
																| 11 | Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197 doi: 10.1016/j.actamat.2013.10.001
 |  
																| 12 | Nguyen T T, Park J S, Kim W S, et al. Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests [J]. Mater. Sci. Eng., 2020, A781: 139114 |  
																| 13 | Zhang J, Liang Z, Zhao G H. Mechanical behaviour analysis of a buried steel pipeline under ground overload [J]. Eng. Failure Anal., 2016, 63: 131 doi: 10.1016/j.engfailanal.2016.02.008
 |  
																| 14 | Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels [J]. Mater. Des., 2012, 41: 370 doi: 10.1016/j.matdes.2012.05.010
 |  
																| 15 | Chen Y N, Wu Z C, Wu G, et al. Investigation on micromechanism of ferrite hardening after pre-straining with different strain rates of dual-phase steel [J]. Mater. Sci. Eng., 2021, A802: 140657 |  
																| 16 | Fillafer A, Krempaszky C, Werner E. On strain partitioning and micro-damage behavior of dual-phase steels [J]. Mater. Sci. Eng., 2014, A614: 180 |  
																| 17 | Ma J, Tian C C, Ma A B. Effect on microstructure and properties of X80 high steel grade pipeline steel by prestrain [J]. Ind. Heat., 2021, 50(2): 49 |  
																| 17 | 马 晶, 田晨超, 马安博. 预应变对X80高钢级管线钢力学性能的影响 [J]. 工业加热, 2021, 50(2): 49 |  
																| 18 | Park S, Jung J, Cho W, et al. Predictive dual-scale finite element simulation for hole expansion failure of ferrite-bainite steel [J]. Int. J. Plast., 2021, 136: 102900 doi: 10.1016/j.ijplas.2020.102900
 |  
																| 19 | Kuang S, Kang Y L, Yu H, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16: 393 doi: 10.1016/S1674-4799(09)60070-4
 |  
																| 20 | Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564 doi: 10.1557/JMR.1992.1564
 |  
																| 21 | Zhao Z T, Wang X S, Qiao G Y, et al. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis [J]. Mater. Des., 2019, 180: 107870 doi: 10.1016/j.matdes.2019.107870
 |  
																| 22 | Zhang C Z, Yang S H, Gong B M, et al. Effects of post weld heat treatment (PWHT) on mechanical properties of C-Mn weld metal: Experimental observation and microstructure-based simulation [J]. Mater. Sci. Eng., 2018, A712: 430 |  
																| 23 | Werner E, Wesenjak R, Fillafer A, et al. Microstructure-based modelling of multiphase materials and complex structures [J]. Contin. Mech. Thermodyn., 2016, 28: 1325 doi: 10.1007/s00161-015-0477-7
 |  
																| 24 | Bintu A, Vincze G, Picu C R, et al. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels [J]. Mater. Sci. Eng., 2015, A629: 54 |  
																| 25 | Shamsujjoha M. Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels [J]. Mater. Sci. Eng., 2020, A776: 139039 |  
																| 26 | Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617 doi: 10.1016/S1359-6454(99)00222-0
 |  
																| 27 | Sedláček R, Blum W. Internal stresses in dislocation subgrain structures [J]. Comput. Mater. Sci., 1998, 13: 148 doi: 10.1016/S0927-0256(98)00055-X
 |  
																| 28 | Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376 doi: 10.1016/j.mtla.2019.100376
 |  
																| 29 | Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145 doi: 10.1080/21663831.2016.1153004
 |  
																| 30 | Orowan E. Problems of plastic gliding [J]. Proc. Phys. Soc., 1940, 52: 8 doi: 10.1088/0959-5309/52/1/303
 |  
																| 31 | Zhou N G, Zhou L. Structure and nucleation mechanisms of misfit dislocations in epitaxial FCC thin films with positive and negative mismatches [J]. Mater. Chem. Phys., 2006, 100: 168 doi: 10.1016/j.matchemphys.2005.12.027
 |  
																| 32 | Olmsted D L, Holm E A, Foiles S M. Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704 doi: 10.1016/j.actamat.2009.04.015
 |  
																| 33 | Liu Q, Fang L M, Xiong Z W, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J]. Mater. Sci. Eng., 2021, A822: 141704 |  
																| 34 | Hasan S M, Mandal A, Singh S B, et al. Work hardening behaviour and damage mechanisms in carbide-free bainitic steel during uni-axial tensile deformation [J]. Mater. Sci. Eng., 2019, A751: 142 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |