Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1299-1310    DOI: 10.11900/0412.1961.2021.00412
  研究论文 本期目录 | 过刊浏览 |
应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响
王楠1, 陈永楠1(), 赵秦阳1, 武刚2, 张震1, 罗金恒2
1.长安大学 材料科学与工程学院 西安 710064
2.中国石油集团石油管工程技术研究院 西安 710077
Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel
WANG Nan1, CHEN Yongnan1(), ZHAO Qinyang1, WU Gang2, ZHANG Zhen1, LUO Jinheng2
1.School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
2.CNPC Tubular Goods Research Institute, Xi'an 710077, China
引用本文:

王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
Nan WANG, Yongnan CHEN, Qinyang ZHAO, Gang WU, Zhen ZHANG, Jinheng LUO. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. Acta Metall Sin, 2023, 59(10): 1299-1310.

全文: PDF(3916 KB)   HTML
摘要: 

利用代表性体积元(RVE)模型以及EBSD技术,研究了变形量为5%时X80管线钢中铁素体和贝氏体在不同应变速率(10-4~10-1 s-1)下的应变分配行为和微结构演变机制。结果表明,应变速率较低时,铁素体有充足的时间来完成几何必需位错(GNDs)向低角度晶界(LAGBs)演变以及LAGBs向高角度晶界(HAGBs)的转变,使得应变畸变能得以释放,应变局域化程度较弱。随着应变速率增加,应变响应时间减少,使得LAGBs向HAGBs的转变过程受阻,导致铁素体内部积累了高密度的GNDs和LAGBs,从而加剧了应变局域化。同时,高应变速率时,铁素体和贝氏体间的应变分配系数降低,容易在其界面附近产生应变梯度,由此形成的GNDs堆积及界面背应力,使得铁素体和贝氏体分别呈现压应力和拉应力状态,极大地限制了两相间的应变协调性,增大了界面间应力集中,从而导致应变硬化能力降低。

关键词 X80钢应变速率RVE模型应变局域化应变硬化    
Abstract

X80 pipeline steel, which is mainly composed of ferrite/bainite, is an important structural steel for pipeline transportation. The plastic deformation of X80 pipeline steel at different strain rates caused by geological and human factors deteriorates its strength. Microstructural transformation and strain localization during deformation are the fundamental factors that deteriorate the mechanical properties of steel. Therefore, in this study, the strain partitioning behavior and microstructure evolution mechanism of ferrite and bainite in X80 pipeline steel at different strain rates (10-4 s-1 to 10-1 s-1) under 5% deformation were revealed using representative volume element models and electron backscatter diffraction technology. The results show that when the strain rate is low (10-4 s-1 to 10-3 s-1), ferrite has sufficient time to complete the evolution of geometrically necessary dislocations (GNDs) to low-angle grain boundaries (LAGBs) and the transformation of LAGBs to high-angle grain boundaries (HAGBs). Ferrite can release strain distortion energy, which can weaken the strain localization behavior of X80 steel. As the strain rate increases, the strain response time decreases, hindering the transition from LAGBs to HAGBs. This results in the accumulation of high-density GNDs and LAGBs in ferrite, thereby intensifying strain localization. Additionally, when the strain rate is high (10-2 s-1 to 10-1 s-1), the strain partitioning coefficient between ferrite and bainite could be reduced, thereby producing the strain gradient in the vicinity of the interface and resulting in GNDs accumulation and back stress formation. Furthermore, ferrite and bainite could show compressive and tensile stresses, respectively, thus limiting the strain coordination between the two phases significantly, increasing the stress concentration near the interface, and reducing the strain hardening ability. The strain partitioning behavior between ferrite and bainite was further revealed to better understand the plastic deformation of X80 pipeline steel.

Key wordsX80 steel    strain rate    RVE model    strain localization    strain hardening
收稿日期: 2021-09-27     
ZTFLH:  TG142.1  
基金资助:陕西省自然科学基金项目(2019JZ-27)
通讯作者: 陈永楠,frank_cyn@163.com,主要从事金属力学性能和表面强化研究
Corresponding author: CHEN Yongnan, professor, Tel: 13384948620, E-mail: frank_cyn@163.com
作者简介: 王 楠,男,1994年生,博士生
图1  基于X80管线钢金相组织建立代表性体积元(RVE)模型示意图及铁素体和贝氏体的真应力-应变曲线
Phaseσy / MPaεyE / GPan
Ferrite3700.0031800.173
Bainite8300.0051900.102
表1  铁素体和贝氏体的力学性能参数[21]
图2  变形量为5%时铁素体、贝氏体和X80钢在不同应变速率下的等效塑性应变(PEEQ)分布
图3  变形量为5%时不同应变速率下铁素体和贝氏体的概率密度函数、应变局域化因子、累积密度函数(CDF)以及两相间的塑性变形差异
图4  铁素体和贝氏体之间的应变分配行为
图5  不同应变速率下X80钢的工程应力-应变曲线和应变速率敏感指数
Strain rate / s-1Yield stress / MPaTensile stress / MPaYield ratioUniform elongation / %
10-45866440.9118.73
10-36136510.9417.61
10-26276670.9415.27
10-16356850.9313.77
表2  不同应变速率下X80钢的力学性能
图6  X80钢在变形量为5%时不同应变速率下的局部平均取向差(KAM)图及铁素体和贝氏体间的应变梯度
图7  几何必需位错(GNDs)堆积引起的背应力示意图和不同应变速率后的GNDs密度分布
图8  X80钢在不同应变速率下的晶界分布图及取向差统计图
图9  X80钢在不同应变速率下低角度晶界(LAGBs)和高角度晶界(HAGBs)的相对体积分数
图10  X80钢从屈服到变形量5%时低应变速率和高应变速率下铁素体内部微结构演变示意图
图11  不同应变速率下X80钢的应变硬化行为
Strain rate / s-1|1 / a|I|1 / a|II|1 / a|IIIεI-IIεII-III
10-40.490.420.260.0840.163
10-30.430.390.230.0790.151
10-20.410.310.170.0660.138
10-10.370.210.110.0610.114
表3  修正C-J模型中各阶段应变硬化能力及转变点应变
1 Tan X D, Ponge D, Lu W J, et al. Carbon and strain partitioning in a quenched and partitioned steel containing ferrite [J]. Acta Mater., 2019, 165: 561
doi: 10.1016/j.actamat.2018.12.019
2 Han Q N, Rui S S, Qiu W H, et al. Crystal orientation effect on fretting fatigue induced geometrically necessary dislocation distribution in Ni-based single-crystal superalloys [J]. Acta Mater., 2019, 179: 129
doi: 10.1016/j.actamat.2019.08.035
3 Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, A759: 624
4 Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
5 Kratochvíl J, Kružík M, Sedláček R. Instability origin of subgrain formation in plastically deformed materials [J]. Int. J. Eng. Sci., 2010, 48: 1401
doi: 10.1016/j.ijengsci.2010.09.017
6 Wang N, Chen Y N, Wu G, et al. Investigation on micromechanism involved in ferrite hardening after prestraining of dual-phase steel [J]. Mater. Sci. Eng., 2021, A800: 140387
7 Dai Q F, Song R B, Fan W Y, et al. Behaviour and mechanism of strain hardening for dual phase steel DP1180 under high strain rate deformation [J]. Acta Metall. Sin., 2012, 48: 1160
doi: 10.3724/SP.J.1037.2012.00364
7 代启锋, 宋仁伯, 范午言 等. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制 [J]. 金属学报, 2012, 48: 1160
8 Shakerifard B, Lopez J G, Legaza M C T, et al. Strain rate dependent dynamic mechanical response of bainitic multiphase steels [J]. Mater. Sci. Eng., 2019, A745: 279
9 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
9 董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
10 Kundu A, Field D P, Chakraborti P C. Effect of strain and strain rate on the development of deformation heterogeneity during tensile deformation of a solution annealed 304 LN austenitic stainless steel: An EBSD study [J]. Mater. Sci. Eng., 2020, A773: 138854
11 Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197
doi: 10.1016/j.actamat.2013.10.001
12 Nguyen T T, Park J S, Kim W S, et al. Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests [J]. Mater. Sci. Eng., 2020, A781: 139114
13 Zhang J, Liang Z, Zhao G H. Mechanical behaviour analysis of a buried steel pipeline under ground overload [J]. Eng. Failure Anal., 2016, 63: 131
doi: 10.1016/j.engfailanal.2016.02.008
14 Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels [J]. Mater. Des., 2012, 41: 370
doi: 10.1016/j.matdes.2012.05.010
15 Chen Y N, Wu Z C, Wu G, et al. Investigation on micromechanism of ferrite hardening after pre-straining with different strain rates of dual-phase steel [J]. Mater. Sci. Eng., 2021, A802: 140657
16 Fillafer A, Krempaszky C, Werner E. On strain partitioning and micro-damage behavior of dual-phase steels [J]. Mater. Sci. Eng., 2014, A614: 180
17 Ma J, Tian C C, Ma A B. Effect on microstructure and properties of X80 high steel grade pipeline steel by prestrain [J]. Ind. Heat., 2021, 50(2): 49
17 马 晶, 田晨超, 马安博. 预应变对X80高钢级管线钢力学性能的影响 [J]. 工业加热, 2021, 50(2): 49
18 Park S, Jung J, Cho W, et al. Predictive dual-scale finite element simulation for hole expansion failure of ferrite-bainite steel [J]. Int. J. Plast., 2021, 136: 102900
doi: 10.1016/j.ijplas.2020.102900
19 Kuang S, Kang Y L, Yu H, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16: 393
doi: 10.1016/S1674-4799(09)60070-4
20 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
doi: 10.1557/JMR.1992.1564
21 Zhao Z T, Wang X S, Qiao G Y, et al. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis [J]. Mater. Des., 2019, 180: 107870
doi: 10.1016/j.matdes.2019.107870
22 Zhang C Z, Yang S H, Gong B M, et al. Effects of post weld heat treatment (PWHT) on mechanical properties of C-Mn weld metal: Experimental observation and microstructure-based simulation [J]. Mater. Sci. Eng., 2018, A712: 430
23 Werner E, Wesenjak R, Fillafer A, et al. Microstructure-based modelling of multiphase materials and complex structures [J]. Contin. Mech. Thermodyn., 2016, 28: 1325
doi: 10.1007/s00161-015-0477-7
24 Bintu A, Vincze G, Picu C R, et al. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels [J]. Mater. Sci. Eng., 2015, A629: 54
25 Shamsujjoha M. Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels [J]. Mater. Sci. Eng., 2020, A776: 139039
26 Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
27 Sedláček R, Blum W. Internal stresses in dislocation subgrain structures [J]. Comput. Mater. Sci., 1998, 13: 148
doi: 10.1016/S0927-0256(98)00055-X
28 Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376
doi: 10.1016/j.mtla.2019.100376
29 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
30 Orowan E. Problems of plastic gliding [J]. Proc. Phys. Soc., 1940, 52: 8
doi: 10.1088/0959-5309/52/1/303
31 Zhou N G, Zhou L. Structure and nucleation mechanisms of misfit dislocations in epitaxial FCC thin films with positive and negative mismatches [J]. Mater. Chem. Phys., 2006, 100: 168
doi: 10.1016/j.matchemphys.2005.12.027
32 Olmsted D L, Holm E A, Foiles S M. Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704
doi: 10.1016/j.actamat.2009.04.015
33 Liu Q, Fang L M, Xiong Z W, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J]. Mater. Sci. Eng., 2021, A822: 141704
34 Hasan S M, Mandal A, Singh S B, et al. Work hardening behaviour and damage mechanisms in carbide-free bainitic steel during uni-axial tensile deformation [J]. Mater. Sci. Eng., 2019, A751: 142
[1] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[4] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[5] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[8] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[9] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[10] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[11] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[12] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
[13] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[14] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[15] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.