|
|
计算辅助高性能增材制造铝合金开发的研究现状与展望 |
高建宝1, 李志诚1, 刘佳1, 张金良2, 宋波2( ), 张利军1( ) |
1.中南大学 粉末冶金国家重点实验室 长沙 410083 2.华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074 |
|
Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review |
GAO Jianbao1, LI Zhicheng1, LIU Jia1, ZHANG Jinliang2, SONG Bo2( ), ZHANG Lijun1( ) |
1.State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China 2.State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
Jianbao GAO,
Zhicheng LI,
Jia LIU,
Jinliang ZHANG,
Bo SONG,
Lijun ZHANG.
Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. Acta Metall Sin, 2023, 59(1): 87-105.
1 |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeronaut. Manuf. Technol., 2018, 61(3): 74
|
1 |
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
|
2 |
Qin Y L, Sun B H, Zhang H, et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field [J]. Chin. J. Lasers, 2021, 48: 1402002
doi: 10.3788/CJL202148.1402002
|
2 |
秦艳利, 孙博慧, 张 昊 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展 [J]. 中国激光, 2021, 48: 1402002
|
3 |
Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy [J]. Laser Optoelectron. Prog., 2018, 55: 011402
|
3 |
朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状 [J]. 激光与光电子学进展, 2018, 55: 011402
|
4 |
Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
|
5 |
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
|
6 |
Kotadia H R, Gibbons G, Das A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: Microstructure and properties [J]. Addit. Manuf., 2021, 46: 102155
|
7 |
Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting [J]. Mater. Des., 2016, 89: 1294
doi: 10.1016/j.matdes.2015.10.065
|
8 |
Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
|
9 |
Yan Q, Song B, Shi Y S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41: 199
doi: 10.1016/j.jmst.2019.08.049
|
10 |
Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg [J]. Sci. Rep., 2021, 11: 6423
doi: 10.1038/s41598-021-85047-2
pmid: 33742014
|
11 |
Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
|
12 |
Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting [J]. Acta Mater., 2016, 115: 285
doi: 10.1016/j.actamat.2016.06.009
|
13 |
Starke Jr E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aerosp. Sci., 1996, 32: 131
doi: 10.1016/0376-0421(95)00004-6
|
14 |
Roberts C E, Bourell D, Watt T, et al. A novel processing approach for additive manufacturing of commercial aluminum alloys [J]. Phys. Procedia, 2016, 83: 909
doi: 10.1016/j.phpro.2016.08.095
|
15 |
Del Guercio G, McCartney D G, Aboulkhair N T, et al. Cracking behaviour of high-strength AA2024 aluminium alloy produced by laser powder bed fusion [J]. Addit. Manuf., 2022, 54: 102776
|
16 |
Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7
pmid: 32393778
|
17 |
Yamasaki S, Okuhira T, Mitsuhara M, et al. Effect of Fe addition on heat-resistant aluminum alloys produced by selective laser melting [J]. Metals, 2019, 9: 468
doi: 10.3390/met9040468
|
18 |
Nalivaiko A Y, Arnautov A N, Zmanovsky S V, et al. Al-Si-Cu and Al-Si-Cu-Ni alloys for additive manufacturing: Composition, morphology and physical characteristics of powders [J]. Mater. Res. Express, 2019, 6: 086536
|
19 |
Zhang B, Wei W, Shi W, et al. Effect of heat treatment on the microstructure and mechanical properties of Er-containing Al-7Si-0.6Mg alloy by laser powder bed fusion [J]. J. Mater. Res. Technol., 2022, 18: 3073
doi: 10.1016/j.jmrt.2022.04.023
|
20 |
Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
|
21 |
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
|
22 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
23 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
24 |
Li G C, Brodu E, Soete J, et al. Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys [J]. Addit. Manuf., 2021, 47: 102210
|
25 |
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
|
26 |
Minasyan T, Hussainova I. Laser powder-bed fusion of ceramic particulate reinforced aluminum alloys: A review [J]. Materials, 2022, 15: 2467
doi: 10.3390/ma15072467
|
27 |
Zhou S Y, Su Y, Wang H, et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2 [J]. Addit. Manuf., 2020, 36: 101458
|
28 |
Plotkowski A, Rios O, Sridharan N, et al. Evaluation of an Al-Ce alloy for laser additive manufacturing [J]. Acta Mater., 2017, 126: 507
doi: 10.1016/j.actamat.2016.12.065
|
29 |
Lu Z, Zhang L J. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys [J]. Mater. Des., 2017, 116: 427
doi: 10.1016/j.matdes.2016.12.034
|
30 |
Yi W, Liu G C, Lu Z, et al. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112: 277
doi: 10.1016/j.jmst.2021.09.061
|
31 |
Wei M, Tang Y, Zhang L J, et al. Phase-field simulation of microstructure evolution in industrial A2214 alloy during solidification [J]. Metall. Mater. Trans., 2015, 46A: 3182
|
32 |
Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
|
33 |
Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning [J]. Acta Mater., 2022, 226: 117612
doi: 10.1016/j.actamat.2021.117612
|
34 |
Park S, Kayani S H, Euh K, et al. High strength aluminum alloys design via explainable artificial intelligence [J]. J. Alloys Compd., 2022, 903: 163828
doi: 10.1016/j.jallcom.2022.163828
|
35 |
Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides [J]. J. Appl. Phys., 2004, 95: 3851
doi: 10.1063/1.1682673
|
36 |
Uesugi T, Higashi K. First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys [J]. Comput. Mater. Sci., 2013, 67: 1
|
37 |
Michi R A, Plotkowski A, Shyam A, et al. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing [J]. Int. Mater. Rev., 2022, 67: 298
doi: 10.1080/09506608.2021.1951580
|
38 |
Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. J. Chem. Phys., 1980, 72: 2384
|
39 |
Nandy J, Sahoo S, Yedla N, et al. Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles [J]. J. Mol. Model., 2020, 26: 125
doi: 10.1007/s00894-020-04395-4
pmid: 32388665
|
40 |
Mahata A, Zaeem M A, Baskes M I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025007
|
41 |
Kurian S, Mirzaeifar R. Selective laser melting of aluminum nano-powder particles, a molecular dynamics study [J]. Addit. Manuf., 2020, 35: 101272
|
42 |
Zeng Q, Wang L J, Jiang W G. Molecular dynamics simulations of the tensile mechanical responses of selective laser-melted aluminum with different crystalline forms [J]. Crystals, 2021, 11: 1388
doi: 10.3390/cryst11111388
|
43 |
Chen H L, Chen Q, Engström A. Development and applications of the TCAL aluminum alloy database [J]. Calphad, 2018, 62: 154
doi: 10.1016/j.calphad.2018.05.010
|
44 |
Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams[M]. New York: Academic Press Inc., 1970: 1
|
45 |
Ågren J. Numerical treatment of diffusional reactions in multicomponent alloys [J]. J. Phys. Chem. Solids, 1982, 43: 385
doi: 10.1016/0022-3697(82)90209-8
|
46 |
Zhang L J, Du Y, Steinbach I, et al. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification [J]. Acta Mater., 2010, 58: 3664
doi: 10.1016/j.actamat.2010.03.002
|
47 |
Zhong J, Chen L, Zhang L J. Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles [J]. npj Comput. Mater., 2021, 7: 35
doi: 10.1038/s41524-021-00500-0
|
48 |
Hallstedt B, Dupin N, Hillert M, et al. Thermodynamic models for crystalline phases. Composition dependent models for volume, bulk modulus and thermal expansion [J]. Calphad, 2007, 31: 28
doi: 10.1016/j.calphad.2006.02.008
|
49 |
Zhang C, Du Y, Liu S H, et al. Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling [J]. Thermochim. Acta, 2016, 635: 8
doi: 10.1016/j.tca.2016.04.019
|
50 |
Zhang F, Du Y, Liu S H, et al. Modeling of the viscosity in the Al-Cu-Mg-Si system: Database construction [J]. Calphad, 2015, 49: 79
doi: 10.1016/j.calphad.2015.04.001
|
51 |
Shang Y J, Yang S L, Zhang L J. Computational modeling of Young's modulus in polycrystal two-phase alloys: Application in γ + γ' Ni-Al alloys [J]. Materialia, 2019, 8: 100500
doi: 10.1016/j.mtla.2019.100500
|
52 |
Yang S L, Zhong J, Wang J, et al. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation [J]. J. Mater. Sci. Technol., 2023, 133: 111
doi: 10.1016/j.jmst.2022.04.057
|
53 |
Yi W, Liu G C, Gao J B, et al. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques [J]. J. Mater. Inf., 2021, 1: 11
|
54 |
Dreano A, Favre J, Desrayaud C, et al. Computational design of a crack-free aluminum alloy for additive manufacturing [J]. Addit. Manuf., 2022, 55: 102876
|
55 |
Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
doi: 10.1016/j.actamat.2015.01.034
|
56 |
Maxwell I, Hellawell A. A simple model for grain refinement during solidification [J]. Acta Metall., 1975, 23: 229
doi: 10.1016/0001-6160(75)90188-1
|
57 |
Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles [J]. Acta Mater., 2001, 49: 1867
doi: 10.1016/S1359-6454(00)00368-2
|
58 |
Li G C, Jadhav S D, Martín A, et al. Investigation of solidification and precipitation behavior of Si-modified 7075 aluminum alloy fabricated by laser-based powder bed fusion [J]. Metall. Mater. Trans., 2021, 52A: 194
|
59 |
Sha J W, Li M X, Yang L Z, et al. Si-assisted solidification path and microstructure control of 7075 aluminum alloy with improved mechanical properties by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1424
doi: 10.1007/s40195-022-01419-1
|
60 |
Santillana B, Boom R, Eskin D, et al. High-temperature mechanical behavior and fracture analysis of a low-carbon steel related to cracking [J]. Metall. Mater. Trans., 2012, 43A: 5048
|
61 |
Scheil E. Bemerkungen zur schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34: 70
doi: 10.1515/ijmr-1942-340303
|
62 |
Dowd J D. Weld cracking of aluminum alloys [J]. Weld. J., 1952, 31: 448-s
|
63 |
Dudas J H, Collins F R. Preventing weld cracks in high-strength aluminum alloys [J]. Weld. J., 1966, 45: 241-s
|
64 |
Liu J W, Kou S. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
doi: 10.1016/j.actamat.2016.12.028
|
65 |
Soysal T, Kou S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction [J]. Acta Mater., 2018, 143: 181
doi: 10.1016/j.actamat.2017.09.065
|
66 |
Liu J W, Kou S. Crack susceptibility of binary aluminum alloys during solidification [J]. Acta Mater., 2016, 110: 84
doi: 10.1016/j.actamat.2016.03.030
|
67 |
Kou S. Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD [J]. Metals, 2021, 11: 1442
doi: 10.3390/met11091442
|
68 |
Tang Z, Vollertsen F. Influence of grain refinement on hot cracking in laser welding of aluminum [J]. Weld. World, 2014, 58: 355
doi: 10.1007/s40194-014-0121-3
|
69 |
Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
doi: 10.1016/S1359-6454(00)00094-X
|
70 |
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
|
71 |
Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification [J]. Mater. Sci. Eng., 1997, A226-228: 763
|
72 |
Chai G, Bäackerud L, Arnberg L. Relation between grain size and coherency parameters in aluminium alloys [J]. Mater. Sci. Technol., 1995, 11: 1099
doi: 10.1179/mst.1995.11.11.1099
|
73 |
Quested T E, Dinsdale A T, Greer A L. Thermodynamic modelling of growth-restriction effects in aluminium alloys [J]. Acta Mater., 2005, 53: 1323
doi: 10.1016/j.actamat.2004.11.024
|
74 |
Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt [J]. Acta Mater., 2011, 59: 2704
doi: 10.1016/j.actamat.2011.01.008
|
75 |
Qi X B, Chen Y, Kang X H, et al. An analytical approach for predicting as-cast grain size of inoculated aluminum alloys [J]. Acta Mater., 2015, 99: 337
doi: 10.1016/j.actamat.2015.08.006
|
76 |
Schmid-Fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification [J]. Acta Mater., 2011, 59: 6133
doi: 10.1016/j.actamat.2011.06.026
|
77 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
77 |
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
78 |
Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100: 224
doi: 10.1016/j.jmst.2021.06.011
|
79 |
Froes F H, Kim Y W, Hehmann F. Rapid solidification of Al, Mg and Ti [J]. JOM, 1987, 39(8): 14
|
80 |
Takata N, Liu M L, Kodaira H, et al. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys [J]. Addit. Manuf., 2020, 33: 101152
|
81 |
Ahmad N A, Wheeler A A, Boettinger W J, et al. Solute trapping and solute drag in a phase-field model of rapid solidification [J]. Phys. Rev., 1998, 58E: 3436
|
82 |
Aziz M J. An atomistic model of solute trapping [A]. Rapid Solidification Processing: Principles and Technologies III: Proceedings of the Third Conference on Rapid Solidification Processing Held at the National Bureau of Standards [C]. Gaithersburg, Maryland: The Bureau, 1982: 113
|
83 |
Aziz M J. Model for solute redistribution during rapid solidification [J]. J. Appl. Phys., 1982, 53: 1158
doi: 10.1063/1.329867
|
84 |
Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification [J]. Acta Metall., 1988, 36: 2335
doi: 10.1016/0001-6160(88)90333-1
|
85 |
Froes F H, Kim Y W, Krishnamurthy S. Rapid solidification of lightweight metal alloys [J]. Mater. Sci. Eng., 1989, A117: 19
|
86 |
Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
doi: 10.1016/j.matdes.2021.109651
|
87 |
Liu G C, Gao J B, Che C, et al. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54Sc casting alloy [J]. Mater. Today Commun., 2020, 24: 101227
|
88 |
Geng R W, Du J, Wei Z Y, et al. Current research status of phase field simulation for microstructures of additively manufactured metals [J]. Mater. Rep., 2018, 32: 1145
|
88 |
耿汝伟, 杜 军, 魏正英 等. 金属增材制造中微观组织相场法模拟研究进展 [J]. 材料导报, 2018, 32: 1145
|
89 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2020, 6: 48
doi: 10.1038/s41578-020-00236-1
|
90 |
Wheeler A A, Boettinger W J, McFadden G B. Phase-field model of solute trapping during solidification [J]. Phys. Rev., 1993, 47E: 1893
|
91 |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
|
92 |
Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems [J]. Physica, 1996, 94D: 135
|
93 |
Steinbach I, Zhang L J, Plapp M. Phase-field model with finite interface dissipation [J]. Acta Mater., 2012, 60: 2689
doi: 10.1016/j.actamat.2012.01.035
|
94 |
Zhang L J, Steinbach I. Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys [J]. Acta Mater., 2012, 60: 2702
doi: 10.1016/j.actamat.2012.02.032
|
95 |
Zhang Z, Yao X X, Ge P. Phase-field-model-based analysis of the effects of powder particle on porosities and densities in selective laser sintering additive manufacturing [J]. Int. J. Mech. Sci., 2020, 166: 105230
doi: 10.1016/j.ijmecsci.2019.105230
|
96 |
Yang Y Y W, Ragnvaldsen O, Bai Y, et al. 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering [J]. npj Comput. Mater., 2019, 5: 81
doi: 10.1038/s41524-019-0219-7
|
97 |
Yang M, Wang L, Yan W T. Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles [J]. Addit. Manuf., 2021, 47: 102286
|
98 |
Jiang P, Gao S, Geng S N, et al. Multi-physics multi-scale simulation of the solidification process in the molten pool during laser welding of aluminum alloys [J]. Int. J. Heat Mass Transfer, 2020, 161: 120316
doi: 10.1016/j.ijheatmasstransfer.2020.120316
|
99 |
Gunasegaram D R, Steinbach I. Modelling of microstructure formation in metal additive manufacturing: Recent progress, research gaps and perspectives [J]. Metals, 2021, 11: 1425
doi: 10.3390/met11091425
|
100 |
Karayagiz K, Johnson L, Seede R, et al. Finite interface dissipation phase field modeling of Ni-Nb under additive manufacturing conditions [J]. Acta Mater., 2020, 185: 320
doi: 10.1016/j.actamat.2019.11.057
|
101 |
O'Toole P I, Patel M J, Tang C, et al. Multiscale simulation of rapid solidification of an aluminium-silicon alloy under additive manufacturing conditions [J]. Addit. Manuf., 2021, 48: 102353
|
102 |
Yang X, Zhang L J, Sobolev S, et al. Kinetic phase diagrams of ternary Al-Cu-Li system during rapid solidification: A phase-field study [J]. Materials, 2018, 11: 260
doi: 10.3390/ma11020260
|
103 |
Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder [J]. Mater. Des., 2014, 63: 856
doi: 10.1016/j.matdes.2014.07.006
|
104 |
Geng R W, Du J, Wei Z Y, et al. Modelling and experimental observation of the deposition geometry and microstructure evolution of aluminum alloy fabricated by wire-arc additive manufacturing [J]. J. Manuf. Process., 2021, 64: 369
doi: 10.1016/j.jmapro.2021.01.037
|
105 |
Vastola G, Zhang G, Pei Q X, et al. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling [J]. Addit. Manuf., 2016, 12: 231
|
106 |
Campoli G, Borleffs M S, Yavari S A, et al. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J]. Mater. Des., 2013, 49: 957
doi: 10.1016/j.matdes.2013.01.071
|
107 |
Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects [J]. Science, 2015, 349: 255
doi: 10.1126/science.aaa8415
pmid: 26185243
|
108 |
Johnson N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing [J]. Addit. Manuf., 2020, 36: 101641
|
109 |
Du Y, Mukherjee T, Mitra P, et al. Machine learning based hierarchy of causative variables for tool failure in friction stir welding [J]. Acta Mater., 2020, 192: 67
doi: 10.1016/j.actamat.2020.03.047
|
110 |
Silbernagel C, Aremu A, Ashcroft I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing [J]. Rapid Prototyp. J., 2020, 26: 625
doi: 10.1108/RPJ-08-2019-0213
|
111 |
Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms [J]. Acta Mater., 2020, 201: 316
doi: 10.1016/j.actamat.2020.10.010
|
112 |
Caiazzo F, Caggiano A. Laser direct metal deposition of 2024 Al alloy: Trace geometry prediction via machine learning [J]. Materials, 2018, 11: 444
doi: 10.3390/ma11030444
|
113 |
Mishra R S, Thapliyal S. Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing [J]. Mater. Des., 2021, 204: 109640
doi: 10.1016/j.matdes.2021.109640
|
114 |
Gao J B, Zhong J, Liu G C, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application in high-throughput CALPHAD computation aiming at efficient alloy design [J]. Adv. Powder Mater., 2022, 1: 100005
|
115 |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
115 |
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
116 |
Dai R, Yang S L, Zhang T D, et al. High-throughput screening of optimal process parameters for PVD TiN coatings with best properties through a combination of 3-D quantitative phase-field simulation and hierarchical multi-objective optimization strategy [J]. Front. Mater., 2022, 9: 924294
doi: 10.3389/fmats.2022.924294
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|