Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 746-759    DOI: 10.11900/0412.1961.2021.00309
  研究论文 本期目录 | 过刊浏览 |
蠕变时效对欠时效7075铝合金力学性能的影响
高川1, 邓运来1,2, 王冯权1, 郭晓斌2()
1.中南大学 轻合金研究院 长沙 410083
2.中南大学 材料科学与工程学院 长沙 410083
Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy
GAO Chuan1, DENG Yunlai1,2, WANG Fengquan1, GUO Xiaobin2()
1.Light Alloy Research Institute, Central South University, Changsha 410083, China
2.School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
Chuan GAO, Yunlai DENG, Fengquan WANG, Xiaobin GUO. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. Acta Metall Sin, 2022, 58(6): 746-759.

全文: PDF(6490 KB)   HTML
摘要: 

采用单轴蠕变拉伸和无应力人工时效实验对比,系统研究了蠕变时效对欠时效态7075合金力学性能的影响,并通过EBSD、SEM、TEM观察,表征位错和析出相等组织随蠕变时效时间的演变规律,定量研究了力学性能与微观组织演变之间的关系。结果表明,欠时效态7075铝合金经过蠕变时效后,保持高强度的同时塑性明显提升。合金的力学性能对蠕变应力比较敏感,在260 MPa、426 K下蠕变时效6 h的试样屈服强度最高,达到537.9 MPa,与人工时效样品相比,蠕变时效样品韧窝分布更为密集,晶粒更偏向于高Schimid因子取向,相对于人工时效样品伸长率提升15%。TEM结果表明,晶内主要为η′相,并且随着蠕变时效时间的延长,晶内析出相的尺寸由2 h的3.04 nm增加到6 h的4.27 nm,体积分数从0.22%增加到0.46%,晶界析出相尺寸增加,发生由连续向间断的转变。EBSD结果表明,所有样品中的再结晶、亚晶比例没有明显变化,平均晶粒尺寸保持在80 μm左右,几何必须位错(GND)的分布随着蠕变时效时间的延长先减少再增多。通过屈服强度贡献模型计算发现,晶界强化贡献基本保持在17 MPa左右,位错强化和析出强化的耦合作用是强度提高的主要原因。

关键词 欠时效7075铝合金蠕变时效析出强化位错强化    
Abstract

The 7075 alloy is widely used in the manufacture of aerospace components, such as aircraft wings and fuselage plates, owing to its high strength and light weight. Moreover, it is well-suited for manufacturing these massive aviation components using creep aging forming (CAF) technology. In this present study, the effect of creep aging on the mechanical properties of under-aged 7075 alloy was systematically studied in detail by means of a uniaxial creep tensile test and a stress-free artificial aging test. EBSD, SEM, and TEM observations were used to characterize the evolution of dislocations and precipitates with creep aging time. A quantitative analysis was performed on the relationship between mechanical properties and microstructure evolution. The results show that creep aging greatly improves the plasticity of the under-aged 7075 aluminum alloy while maintaining its high strength. The mechanical properties of the alloy are sensitive to creep stress. The sample aged for 6 h under 260 MPa and 426 K has the maximum yield strength, reaching 537.9 MPa. In comparison to the artificial aging sample, the dimple distribution of the creep aging sample is denser and the grain is more inclined toward a high Schmid factor orientation, which is 15% higher than the artificial aging sample. TEM results show that the primary phase in the crystal is η′ phase. The size of the precipitated phase in the crystal grows with increasing creep aging time from 3.04 nm for 2 h to 4.27 nm for 6 h and the volume fraction increases from 0.22% to 0.46%. The size of the grain boundary precipitates increases and the transition from continuous to discontinuous occurs. The EBSD results show that no significant change in the recrystallization and subgrain ratio occurred in any of the samples, and the average grain size remains approximately 80 μm. The distribution of geometrically necessary dislocations (GND) decreases first and subsequently increases with the extension of creep aging time. The contribution of grain boundary strengthening to the yield strength contribution model is shown to be essentially constant at about 17 MPa, and the coupling effect of dislocation and precipitation strengthening is the primary reason for the increase in strength.

Key wordsunder-aged    7075 aluminum alloy    creep aging    precipitation strengthening    dislocation strengthening
收稿日期: 2021-07-29     
ZTFLH:  TG146.2  
基金资助:国家新材料生产应用示范平台建设项目(TC190H3ZV)
作者简介: 高 川,男,1997年生,硕士生
图1  材料制备与析出行为演变过程
图2  7075铝合金蠕变试样
图3  欠时效态7075铝合金在426 K不同应力下的蠕变应变行为及相应的蠕变速率
图4  7075铝合金不同时效处理硬化曲线
图5  不同时效处理7075铝合金样品的力学性能
图6  不同时效处理下样品的典型断裂形貌
图7  蠕变实验前7075铝合金的显微组织OM像
图8  不同时效处理的样品EBSD反极图及对应的Taylor因子图
图9  不同时效处理下沿[011]的7075铝合金TEM明场像以及对应的SAED谱
SampleNumber density of precipitated phaseVolume fractionη′ radius
1022 mm-3%nm
UA + CA/260 MPa-2 h1.50 ± 0.040.22 ± 0.073.04 ± 0.12
UA + CA/260 MPa-6 h1.13 ± 0.030.46 ± 0.054.27 ± 0.21
UA + CA/260 MPa-10 h0.93 ± 0.050.39 ± 0.084.32 ± 0.36
UA + AA/8 h1.12 ± 0.030.46 ± 0.084.29 ± 0.28
表1  蠕变时效与人工时效在不同时间下的析出相统计情况
图10  不同时效处理样品的形核平均取向差(KAM)图
图11  强化模型计算结果
图12  不同时效处理的Schmid因子图
图13  不同时效处理样品的Schmid因子分布图,和平均Schmid因子及其对应的断口平均韧窝直径
图14  不同时效处理下沿<110>的7075铝合金晶界TEM像
1 Guyot P, Cottignies L. Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys [J]. Acta Mater., 1996, 44: 4161
doi: 10.1016/S1359-6454(96)00033-X
2 Wang Q, Zhan L H, Xu Y Q, et al. Creep aging behavior of retrogression and re-aged 7150 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2599
doi: 10.1016/S1003-6326(20)65405-X
3 Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
4 Shan D, Zhen L. 10-Aging behavior and microstructure evolution in the processing of aluminum alloys [A]. Microstructure Evolution in Metal Forming Processes [M]. Cambridge: Woodhead Publishing, 2012: 267
5 Lin Y C, Jiang Y Q, Chen X M, et al. Effect of creep-aging on precipitates of 7075 aluminum alloy [J]. Mater. Sci. Eng., 2013, A588: 347
6 Deschamps A, Livet F, Bréchet Y. Influence of predeformation on ageing in an Al-Zn-Mg alloy—I. Microstructure evolution and mechanical properties [J]. Acta Mater., 1998, 47: 281
doi: 10.1016/S1359-6454(98)00293-6
7 Ma K K, Hu T, Yang H, et al. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys [J]. Acta Mater., 2016, 103: 153
doi: 10.1016/j.actamat.2015.09.017
8 Fang H C, Luo F H, Chen K H. Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy [J]. Mater. Sci. Eng., 2017, A684: 480
9 Holman M C. Autoclave age forming large aluminum aircraft panels [J]. J. Mech. Work. Technol., 1989, 20: 477
doi: 10.1016/0378-3804(89)90055-7
10 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2010: 84
11 Zhu A W, Starke E A. Stress aging of Al-xCu alloys: Experiments [J]. Acta Mater., 2001, 49: 2285
doi: 10.1016/S1359-6454(01)00119-7
12 Seraj F, Fadaie-Vash L, Vakili-Tahami F, et al. Obtaining optimum creep lifetime of Al 7075-T6 rotating pressurized vessel based on the experimental data, using reference stress method (RSM) [J]. Int. J. Press. Vessels Pip., 2021, 192: 104390
13 Chen K, Zhan L H, Xu Y Q, et al. Effect of pulsed current density on creep-aging behavior and microstructure of AA7150 aluminum alloy [J]. J. Mater. Res. Technol., 2020, 9: 15433
doi: 10.1016/j.jmrt.2020.10.100
14 Liu C H, Yang J S, Ma P P, et al. Large creep formability and strength-ductility synergy enabled by engineering dislocations in aluminum alloys [J]. Int. J. Plast., 2020, 134: 102774
doi: 10.1016/j.ijplas.2020.102774
15 Jeshvaghani R A, Emami M, Shahverdi H R, et al. Effects of time and temperature on the creep forming of 7075 aluminum alloy: Springback and mechanical properties [J]. Mater. Sci. Eng., 2011, A528: 8795
16 Jeshvaghani R A, Shahverdi H R, Hadavi S M M. Investigation of the age hardening and operative deformation mechanism of 7075 aluminum alloy under creep forming [J]. Mater. Sci. Eng., 2012, A552: 172
17 Lin Y C, Peng X B, Jiang Y Q, et al. Effects of creep-aging parameters on aging precipitates of a two-stage creep-aged Al-Zn-Mg-Cu alloy under the extra compressive stress [J]. J. Alloys Compd., 2018, 743: 448
doi: 10.1016/j.jallcom.2018.01.238
18 Guo W, Guo J Y, Wang J D, et al. Evolution of precipitate microstructure during stress aging of an Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2015, A634: 167
19 Zhan L H, Lin J G, Dean T A, et al. Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions [J]. Int. J. Mech. Sci., 2011, 53: 595
doi: 10.1016/j.ijmecsci.2011.05.006
20 Uesugi T, Higashi K. First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys [J]. Comput. Mater. Sci., 2013, 67: 1
21 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
22 Li R X, Ren Z, Wu Y, et al. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al-Zn-Li-Mg-Cu alloy [J]. Mater. Sci. Eng., 2021, A802: 140637
23 Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47: 4171
doi: 10.1016/S1359-6454(99)00275-X
24 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
25 Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress [J]. Acta Mater., 1998, 47: 293
doi: 10.1016/S1359-6454(98)00296-1
26 Dixit M, Mishra R S, Sankaran K K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys [J]. Mater. Sci. Eng., 2008, A478: 163
27 Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
28 Mukhopadhyay A K. Development of reproducible and increased strength properties in thick extrusions of low-alloy Al-Zn-Mg-Cu based AA 7075 [J]. Metall. Mater. Trans., 1997, 28A: 2429
29 Liu F, Sommer F, Bos C, et al. Analysis of solid state phase transformation kinetics: Models and recipes [J]. Int. Mater. Rev., 2007, 52: 193
doi: 10.1179/174328007X160308
30 Xia X Y, Sanaty-Zadeh A, Zhang C, et al. Experimental investigation and simulation of precipitation evolution in Mg-3Nd-0.2Zn alloy [J]. Calphad, 2018, 60: 58
doi: 10.1016/j.calphad.2017.11.006
31 Hou L G, Liu M L, Wang X D, et al. Cryogenic processing high-strength 7050 aluminum alloy and controlling of the microstructures and mechanical properties [J]. Acta Metall. Sin., 2017, 53: 1075
31 侯陇刚, 刘明荔, 王新东 等. 高强7050铝合金超低温大变形加工与组织、性能调控 [J]. 金属学报, 2017, 53: 1075
32 Asgharzadeh H, Mcqueen H J. Grain growth and stabilisation of nanostructured aluminium at high temperatures: Review [J]. Mater. Sci. Technol., 2015, 31: 1016
doi: 10.1179/1743284714Y.0000000706
33 Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
doi: 10.1016/j.ijplas.2021.102972
34 Jiang J, Britton T B, Wilkinson A J. Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: Effects of detector binning and step size [J]. Ultramicroscopy, 2013, 125: 1
doi: 10.1016/j.ultramic.2012.11.003 pmid: 23262146
35 Cheng W J, Liu W, Fan X B, et al. Cooperative enhancements in ductility and strain hardening of a solution-treated Al-Cu-Mn alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2020, A790: 139707
36 Zribi Z, Ktari H H, Herbst F, et al. EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation [J]. Mater. Charact., 2019, 153: 190
doi: 10.1016/j.matchar.2019.04.044
37 Xiao H, Lu Z, Zhang K F, et al. Achieving outstanding combination of strength and ductility of the Al-Mg-Li alloy by cold rolling combined with electropulsing assisted treatment [J]. Mater. Des., 2020, 186: 108279
doi: 10.1016/j.matdes.2019.108279
38 Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment [J]. Acta Metall. Sin., 2020, 56: 1007
38 韩宝帅, 魏立军, 徐严谨 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响 [J]. 金属学报, 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
[1] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[2] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[3] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[4] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[5] 邵盈恺, 王玉玺, 杨志斌, 史春元. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547-556.
[6] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[7] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[8] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[9] 马利平, 梁志强, 王西彬, 赵文祥, 焦黎, 刘志兵. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报, 2015, 51(3): 307-314.
[10] 苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
[11] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[12] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[13] 张劲,邓运来,杨金龙,张新明. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报, 2013, 49(3): 379-384.
[14] 康举 栾国红 付瑞东. 7075-T6铝合金搅拌摩擦焊焊缝表面带状纹理的组织与性能[J]. 金属学报, 2011, 47(2): 224-230.
[15] 刘晓艳 潘清林 陆智伦 曹素芳 何运斌 李文斌. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47(1): 53-60.