Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 379-384    DOI: 10.3724/SP.J.1037.2012.00642
  论文 本期目录 | 过刊浏览 |
2124铝合金蠕变时效实验及本构模型研究
张劲1邓运来1,2,杨金龙1,张新明1,2
1) 中南大学材料科学与工程学院, 长沙 410083
2) 中南大学有色金属材料科学与工程教育部重点实验室, 长沙 410083
EXPERIMENTAL STUDIES AND CONSTITUTIVE MODELING FOR CREEP AGING OF 2124 Al ALLOY
ZHANG Jin1, DENG Yunlai1,2, YANG Jinlong1, ZHANG Xinming1,2
1) School of Materials Science and Engineering, Central South University, Changsha 410083
2) The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South,University, Changsha 410083
引用本文:

张劲,邓运来,杨金龙,张新明. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报, 2013, 49(3): 379-384.
ZHANG Jin, DENG Yunlai, YANG Jinlong, ZHANG Xinming. EXPERIMENTAL STUDIES AND CONSTITUTIVE MODELING FOR CREEP AGING OF 2124 Al ALLOY[J]. Acta Metall Sin, 2013, 49(3): 379-384.

全文: PDF(663 KB)  
摘要: 

为表征2124铝合金的蠕变时效行为, 在不同温度和应力状态下进行了一系列蠕变时效实验, 并对时效过程中试样的微观组织与力学性能进行了观测. 基于实验结果并结合对蠕变机制与时效强化的考虑, 建立了适用于2124铝合金的蠕变时效的统一本构模型. 模型不仅将宏观的本构关系、力学性能以及微观结构紧密联系起来, 而且能够适用于不同的时效温度和应力状态. 最后应用模型预测了另一温度下不同应力状态的蠕变应变曲线, 与实验结果吻合很好.

Abstract

A series of creep ageing tests under different temperatures and stresses have been designed to characterize the creep aging behavior of 2124 Al alloy, and the microstructure and properties of the samples in the interrupted tests have been observed. On the basis of the experimental results, combining the creep mechanism and age strengthening theory, a unified constitutive model has been developed for creep age forming of 2124 Al alloy. The constitutive relations, aging strengthening effect and the microstructure are closely correlated in the model, which could be suitable for different ageing temperatures and stress levels. Finally, the model hasbeen used to predict the creep strain curves of added creep aging tests with different temperature, the computed results tally well with the experimental data.

收稿日期: 2012-10-27     
基金资助:

国家重点基础研究发展计划资助项目2010CB731700

作者简介: 张劲, 男, 1986年生, 博士生

[1]Williams J C, Starke E A.Acta Mater, 2003; 51: 5775


[2]Zhan L, Lin J, Dean T A.Int J Mach Tool Manu, 2011; 51: 1

[3]Liu X Y, Pan Q L, Lu Z L, Cao S F, He Y B, Li W B.Acta Metall Sin, 2011; 47: 53

(刘晓艳, 潘清林, 陆智伦, 曹素芳, 何运斌, 李文斌. 金属学报, 2011; 47: 53)

[4]Li C, Wan M, Wu X D, Huang L.Mater Sci Eng, 2010; A527: 3623

[5]Zhan L, Lin J, Dean T A, Huang M.Int J Mech Sci, 2011; 53: 595

[6]Spigarelli S.Mater Sci Eng, 2008; A492: 153

[7]Ho K C, Lin J, Dean T A.Int J Plast, 2004; 20: 733

[8]Ho K C, Lin J, Dean T A.J Mater Process Technol, 2004; 153--154: 122

[9]Li B, Lin J, Yao X.Int J Mech Sci, 2002; 44: 987

[10]Lin J, Yang J.Int J Plast, 1999; 15: 1181

[11]Kowalewski Z L.J Strain Anal Eng, 1994; 29: 309

[12]Muthu K S.Mater Sci Eng, 2011; A528: 4152

[13]Badini C, Marino F, Verne E.Mater Sci Eng, 1995; A191: 185

[14]Zhu A W, Starke E A.Acta Mater, 1999; 47: 3263

[15]Barlat F, Glazov M V, Brem J C.Int J Plast, 2002; 18: 919

[16]da Costa T J, Cram D G, Bourgeois L, Bastow T J, Hill A J, Hutchinson C R.Acta Mater, 2008; 56: 6109

[17]Deschamps A, Brechet Y.Acta Mater, 1998; 47: 293

[18]Myhr O R, Grong φ, Fj H G, Marioara C D.Acta Mater, 2004; 52: 4997

[19]Starink M J, Wang P, Sinclair I, Gregson P J.Acta Mater, 1999; 47: 3855

[20]Liu G, Ding X D, Sun J, Chen K H.Trans Nonferrous Met Soc China, 2001; 11: 337

[21]Liu G, Zhang G J, Ding X D, Sun J, Chen K H.Mater Sci Eng, 2003; A344: 113

[22]Nie J F, Muddle B C.Acta Mater, 2008; 56: 3490

[23]Barlat F, Glazov M V, Brem J C, Lege D J.Int J Plast, 2002; 18: 919

[24]Esmaeili S, Lloyd D J, Poole W J.Acta Mater, 2003; 51: 2243

[25]Cao J, Lin J.Int J Mech Sci, 2008; 50: 193
No related articles found!