|
|
激光熔覆高强韧铁基涂层精细组织调控与性能研究 |
冯凯1,2,3, 郭彦兵4, 冯育磊1,2,3, 姚成武1,2,3, 朱彦彦1,2,3, 张群莉5, 李铸国1,2,3( ) |
1.上海交通大学 材料科学与工程学院 上海 200240 2.上海交通大学 上海市激光制造与材料改性重点实验室 上海 200240 3.高新船舶与深海开发装备协同创新中心 上海 200240 4.上海电机学院 材料学院 上海 201306 5.浙江工业大学 激光先进制造研究院 杭州 310014 |
|
Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings |
FENG Kai1,2,3, GUO Yanbing4, FENG Yulei1,2,3, YAO Chengwu1,2,3, ZHU Yanyan1,2,3, ZHANG Qunli5, LI Zhuguo1,2,3( ) |
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China 3.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China 4.School of Materials Science, Shanghai DianJi University, Shanghai 201306, China 5.Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China |
引用本文:
冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
Kai FENG,
Yanbing GUO,
Yulei FENG,
Chengwu YAO,
Yanyan ZHU,
Qunli ZHANG,
Zhuguo LI.
Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. Acta Metall Sin, 2022, 58(4): 513-528.
1 |
Gao Y X, Du L Z, Huang C B, et al. Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences [J]. Appl. Surf. Sci., 2011, 257: 10195
|
2 |
Zhu S Y, Bi Q L, Yang J, et al. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites [J]. Tribol. Int., 2011, 44: 1182
|
3 |
Chao M J, Wang W L, Liang E J, et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 1918
|
4 |
Ma M M, Wang Z M, Zeng X Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition [J]. Mater. Sci. Eng., 2017, A685: 265
|
5 |
Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Opt. Laser Technol., 2021, 134: 106619
|
6 |
Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Opt. Laser Technol., 2021, 138: 106915
|
7 |
Singh S, Goyal D K, Kumar P, et al. Laser cladding technique for erosive wear applications: A review [J]. Mater. Res. Express, 2020, 7: 012007
|
8 |
Gao W Y, Chang C, Li G, et al. Study on the laser cladding of FeCrNi coating [J]. Optik, 2019, 178: 950
|
9 |
Zhang Y, Han T F, Xiao M, et al. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nb x high-entropy alloy coating [J]. Optik, 2019, 198: 163316
|
10 |
Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on Fe-based substrate [J]. Surf. Technol., 2020, 49(3): 74
|
10 |
朱红梅, 胡际鹏, 李柏春 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020, 49(3): 74
|
11 |
Tong W H, Zhang X Y, Li W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer [J]. Acta Metall. Sin., 2020, 56: 1265
|
11 |
童文辉, 张新元, 李为轩 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响 [J]. 金属学报, 2020, 56: 1265
|
12 |
Xu Z F, Jiao J K, Zhang Z, et al. Research on laser repair process of Ni-based superalloy [J]. Mater. Rep., 2019, 33: 3196
|
12 |
徐子法, 焦俊科, 张 正 等. 镍基高温合金激光修复工艺研究 [J]. 材料导报, 2019, 33: 3196
|
13 |
Wang X H, Zhang M, Liu X M, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 3600
|
14 |
Katakam S, Santhanakrishnan S, Vora H, et al. Stress-induced selective nano-crystallization in laser-processed amorphous Fe-Si-B alloys [J]. Philos. Mag. Lett., 2012, 92: 617
|
15 |
Han B, Li M Y, Wang Y. Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel [J]. J. Mater. Eng. Perform., 2013, 22: 3749
|
16 |
Telasang G, Majumdar J D, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metall. Mater. Trans., 2015, 46A: 2309
|
17 |
Zhang H, Zou Y, Zou Z D, et al. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder [J]. Opt. Laser Technol., 2015, 65: 119
|
18 |
Dai S, Zuo D W, Fang C, et al. Characteration of laser cladded Fe-Mn-Cr alloy coatings modified by plasma nitriding [J]. Mater. Trans., 2016, 57: 539
|
19 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
|
20 |
Zhang Q M. An investigation on the applying fundamentals of powder feeding laser cladding [D]. Beijing: Changchun Institute of Optics and Fine Mechnics and Physics, Chinese Academy Sciences, 2000
|
20 |
张庆茂. 送粉激光熔覆应用基础理论的研究 [D]. 北京: 中国科学院长春光学精密机械与物理研究所, 2000
|
21 |
Liu Z X. Modeling and numerical simulation on laser remelting and cladding [D]. Xi'an: Northwestern Polytechnical University, 2003
|
21 |
刘振侠. 激光熔凝和激光熔覆的数学模型及数值分析 [D]. 西安: 西北工业大学, 2003
|
22 |
Toyserkani E, Khajepour A, Corbin S. Laser Cladding [M]. Boca Raton: CRC Press, 2005: 1
|
23 |
Hu H Q. Principle of Metal Solidification [M]. 2nd Ed., Beijing: China Machine Press, 2000: 1
|
23 |
胡汉启. 金属凝固原理[M]. 第2版. 北京: 机械工业出版社, 2000: 1
|
24 |
Wu X L, Chen G N. Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating [J]. Mater. Sci. Eng., 1999, A270: 183
|
25 |
Li Y M, Yang H O, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming [J]. Mater. Sci. Eng., 2003, A360: 18
|
26 |
Wu X L, Hong Y S. Fe-based thick amorphous-alloy coating by laser cladding [J]. Surf. Coat. Technol., 2001, 141: 141
|
27 |
Shan B, Chen J L, Chen S Y, et al. Laser cladding of Fe-based corrosion and wear-resistant alloy: Genetic design, microstructure, and properties [J], Surf. Coat. Technol., 2022, 433: 128117
|
28 |
Zhang W P, Liu S. Development of the effect of high energy laser on the rapid solidification structure and properties of the material surface [J]. Foundry, 2005, 54: 28
|
28 |
张维平, 刘 硕. 高能激光束对材料表层快速凝固组织及性能影响的研究进展 [J]. 铸造, 2005, 54: 28
|
29 |
Kagawa A, Ohta Y, Nakayama K. Mechanism of crack generation in carbide surface layer of laser-clad iron alloys [J]. Mater. Trans., 2002, 43: 1261
|
30 |
Yu J M, Lu X, Chao M J, et al. Investigation on microstructure and cracking susceptibility of laser-clad Fe-based alloy coatings [J]. Appl. Laser, 2006, 26: 175
|
30 |
余菊美, 卢 洵, 晁明举 等. 铁基合金激光熔覆层组织分布及开裂敏感性研究 [J]. 应用激光, 2006, 26: 175
|
31 |
Chen Z K, Liu M, Zeng D C, et al. Research on formation causes and elimination methods of the laser cladding cracks [J]. Laser J., 2009, 30(1): 55
|
31 |
陈志坤, 刘 敏, 曾德长 等. 激光熔覆裂纹的产生原因及消除方法探究 [J]. 激光杂志, 2009, 30(1): 55
|
32 |
Wang H P. Discussion on crack in laser-clad case [J]. Heat Treat., 2008, 23(6): 24
|
32 |
王慧萍. 关于激光熔覆层开裂问题的探讨 [J]. 热处理, 2008, 23(6): 24
|
33 |
Li M X, Zhang S H, Li H S, et al. Effect of nano-CeO2 on cobalt-based alloy laser coatings [J]. J. Mater. Process. Technol., 2008, 202: 107
|
34 |
Yang X Y, Peng X, Chen J, et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Appl. Surf. Sci., 2007, 253: 4420
|
35 |
Li S, Zeng X Y, Hu Q W. The mechanism of strengthening and toughening of crack-free Fe-based alloy with high hardness for laser cladding [J]. Trans. China Weld. Inst., 2008, 29(7): 101
|
35 |
李 胜, 曾晓雁, 胡乾午. 高硬度激光熔覆专用Fe基合金强韧化机理 [J]. 焊接学报, 2008, 29(7): 101
|
36 |
Li S, Hu Q W, Zeng X Y, et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer [J]. Appl. Surf. Sci., 2005, 240: 63
|
37 |
Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production [J]. Mater. Des., 2011, 32: 3248
|
38 |
Garcia-Mateo C, Caballero F G, Sourmail T, et al. Composition design of nanocrystalline bainitic steels by diffusionless solid reaction [J]. Met. Mater. Int., 2014, 20: 405
|
39 |
Rementeria R, Jimenez J A, Allain S Y P, et al. Quantitative assessment of carbon allocation anomalies in low temperature bainite [J]. Acta Mater., 2017, 133: 333
|
40 |
Caballero F G, Allain S, Cornide J, et al. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application [J]. Mater. Des., 2013, 49: 667
|
41 |
Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon [J]. Mater. Sci. Eng., 2012, A549: 185
|
42 |
García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
|
43 |
Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering [J]. Mater. Sci. Eng., 2014, A607: 569
|
44 |
Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
|
45 |
Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite [J]. ISIJ Int., 2003, 43: 1821
|
46 |
Guo Y B, Li Z G, Yao C W, et al. Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding [J]. Mater. Des., 2014, 63: 100
|
47 |
Guo Y B, Feng K, Lu F G, et al. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings [J]. Appl. Surf. Sci., 2015, 357: 309
|
48 |
Guo Y B, Li Z G, Hosseini S R E, et al. Effect of chemical segregation on nanobainitic transformation in laser cladded coatings [J]. Mater. Des., 2015, 88: 781
|
49 |
Guo Y B, Yao C W, Feng K, et al. Effect of isothermal temperature on growth behavior of nanostructured bainite in laser cladded coatings [J]. Materials, 2017, 10: 800
|
50 |
Gu S T, Chai G Z, Wu H P, et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis [J]. Mater. Des., 2012, 39: 72
|
51 |
Guo Y B, Li Z G, Li L Q, et al. The effects of micro-segregation on isothermal transformed nano bainitic microstructure and mechanical properties in laser cladded coatings [J]. Materials, 2020, 13: 3017
|
52 |
Jiang Y L, Fang J X, Ma G Z, et al. Microstructure and properties of an as-deposited and post treated high strength carbide-free bainite steel fabricated via laser powder deposition [J]. Mater. Sci. Eng., 2021, A824: 141791
|
53 |
Xiao B, Xing J D, Feng J, et al. A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both from ab initio calculations and experiments [J]. J. Phys., 2009, 42D: 115415
|
54 |
Zheng B C, Huang Z F, Xing J D, et al. Three-body abrasive wear behavior of cementite with different chromium concentrations [J]. Tribol. Lett., 2016, 61: 13
|
55 |
Zheng B C, Huang Z F, Xing J D, et al. Effect of chromium content on cementite-pearlite interaction of white cast iron during three-body abrasive wear [J]. Ind. Lubr. Tribol., 2017, 69: 863
|
56 |
Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry [J]. J. Alloys Compd., 1997, 257: 227
|
57 |
Shein I R, Medvedeva N I, Ivanovskii A L. Electronic and structural properties of cementite-type M3 X (M = Fe, Co, Ni; X = C or B) by first principles calculations [J]. Physica, 2006, 371B: 126
|
58 |
Röttger A, Weber S, Theisen W. Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applications [J]. Mater. Sci. Eng., 2012, A532: 511
|
59 |
Lin Y C, Chen H M, Chen Y C. Microstructures and wear properties of various clad layers of the Fe-W-C-B-Cr system [J]. Surf. Coat. Technol., 2013, 236: 410
|
60 |
Feng Y L, Pang X T, Feng K, et al. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B) [J]. J. Mater. Res. Technol., 2021, 15: 5597
|
61 |
Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
|
62 |
Dong R J. Metallurgical Principle [M]. Beijing: Machinery Industry Press, 1980: 1
|
62 |
董若景. 冶金原理 [M]. 北京: 机械工业出版社, 1980: 1
|
63 |
Werniewicz K, Kühn U, Mattern N, et al. New Fe-Cr-Mo-Ga-C composites with high compressive strength and large plasticity [J]. Acta Mater., 2007, 55: 3513
|
64 |
Berns H, Saltykova A, Röttger A, et al. Wear protection by Fe-B-C hard phases [J]. Steel Res. Int., 2011, 82: 786
|
65 |
Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J]. Acta Mater., 2011, 59: 5845
|
66 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
|
67 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
|
68 |
Tuominen J, Näkki J, Pajukoski H, et al. Microstructural and abrasion wear characteristics of laser-clad tool steel coatings [J]. Surf. Eng., 2016, 32: 923
|
69 |
Luo W, Selvadurai U, Tillmann W. Effect of residual stress on the wear resistance of thermal spray coatings [J]. J. Therm. Spray Technol., 2016, 25: 321
|
70 |
Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel [J]. Tribol. Int., 2017, 115: 108
|
71 |
Goto H, Amamoto Y. Effect of varying load on wear resistance of carbon steel under unlubricated conditions [J]. Wear, 2003, 254: 1256
|
72 |
Liu Z L, Li Z L, Liu W D. Interface Electronic Structure and Interface Performance [M]. Beijing: Science Press, 2002: 1
|
72 |
刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 1
|
73 |
Yao C W. Study on alloy design, microstructure characteristics, and strength and toughness of Fe-based laser cladding layer [D]. Shanghai: Shanghai Jiao Tong University, 2010
|
73 |
姚成武. 铁基激光熔覆涂层的合金系设计、组织特征及强韧性研究 [D]. 上海: 上海交通大学, 2010
|
74 |
Yao C W, Huang J, Zhang P L, et al. Toughening of Fe-based laser-clad alloy coating [J]. Appl. Surf. Sci., 2011, 257: 2184
|
75 |
Cheng J B, Liang X B, Chen Y X, et al. High-temperature erosion resistance of FeBSiNb amorphous coatings deposited by arc spraying for boiler applications [J]. J. Therm. Spray Technol., 2013, 22: 820
|
76 |
Zhu Y Y. Study on FeCo-based amorphous coating using diode laser cladding processing [D]. Shanghai: Shanghai Jiao Tong University, 2013
|
76 |
朱彦彦. 半导体激光熔覆铁钴基非晶层的研究 [D]. 上海: 上海交通大学, 2013
|
77 |
Zhu Y Y, Li Z G, Li R F, et al. High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
|
78 |
Verdon C, Karimi A, Martin J L. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures [J]. Mater. Sci. Eng., 1998, A246: 11
|
79 |
Cullity B D. Elements of X-ray Diffraction [M]. 2nd Ed., Phillippines: Addison-Wesley Publishing Company Inc, 1978: 1
|
80 |
Zhu Y Y, Li Z G, Li R F, et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
|
81 |
Shen B L, Inoue A, Chang C T. Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability [J]. Appl. Phys. Lett., 2004, 85: 4911
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|