Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 513-528    DOI: 10.11900/0412.1961.2021.00549
  综述 本期目录 | 过刊浏览 |
激光熔覆高强韧铁基涂层精细组织调控与性能研究
冯凯1,2,3, 郭彦兵4, 冯育磊1,2,3, 姚成武1,2,3, 朱彦彦1,2,3, 张群莉5, 李铸国1,2,3()
1.上海交通大学 材料科学与工程学院 上海 200240
2.上海交通大学 上海市激光制造与材料改性重点实验室 上海 200240
3.高新船舶与深海开发装备协同创新中心 上海 200240
4.上海电机学院 材料学院 上海 201306
5.浙江工业大学 激光先进制造研究院 杭州 310014
Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings
FENG Kai1,2,3, GUO Yanbing4, FENG Yulei1,2,3, YAO Chengwu1,2,3, ZHU Yanyan1,2,3, ZHANG Qunli5, LI Zhuguo1,2,3()
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China
3.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
4.School of Materials Science, Shanghai DianJi University, Shanghai 201306, China
5.Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
引用本文:

冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
Kai FENG, Yanbing GUO, Yulei FENG, Chengwu YAO, Yanyan ZHU, Qunli ZHANG, Zhuguo LI. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. Acta Metall Sin, 2022, 58(4): 513-528.

全文: PDF(6058 KB)   HTML
摘要: 

激光熔覆作为一种高精度成形与低损伤控性的表面强化技术,可以赋予零部件表面更高的性能。铁基涂层作为一种低成本的涂层体系一直广泛地应用于各种机械零部件的表面强化领域。随着零部件对高性能和长寿命的追求,对激光熔覆涂层材料的设计及性能也提出了更高要求。本文综述了作者团队近年来设计和制备的纳米贝氏体铁基涂层、超细共晶增强铁基涂层、颗粒增强马氏体涂层及高硬度非晶铁基涂层,并从设计思路、涂层组织结构和力学性能等方面详细介绍了研究结果,并对未来发展方向进行了展望。

关键词 激光熔覆表面技术铁基涂层组织调控高强韧    
Abstract

Laser cladding is a powerful surface strengthening technology that combines with high precision forming and low substrate damage to endow components with high surface performance. Fe-based coatings have been widely used in the surface engineering of many mechanical components. As the demand for higher performance and longer service life for components increases, the design and fabrication of new laser cladded coatings are expected to improve. This paper reviews recent research results of our team on laser cladding of novel Fe-based coatings, such as nano-bainite Fe-based coating, ultra-fine eutectic Fe-based coating, particle reinforced martensite coating, and high-hardness amorphous Fe-based coating. The study results are presented from the perspectives of the design, microstructure, and mechanical properties of these novel coating materials.

Key wordslaser cladding    surface technology    Fe-based coating    microstructure controlling    high strength and high toughness
收稿日期: 2021-12-11     
ZTFLH:  TG178  
基金资助:国家重点研发计划项目(2018YFB0407300)
作者简介: 冯 凯,男,1984年生,副教授,博士
图1  不同等温温度和时间下所得到的纳米贝氏体组织形貌[46]及枝晶间残余奥氏体形成机制[48]
图2  不同等温温度下所得到的纳米贝氏体铁素体极图及生长取向分布图[49]
图3  不同等温温度下得到的纳米贝氏体显微组织的TEM像及选区电子衍射(SAED)花样[49]
图4  激光熔覆及不同等温温度下所得到的纳米贝氏体相转变动力学曲线
图5  激光熔覆及不同等温温度下所得到的纳米贝氏体涂层的Vickers硬度和拉伸强度
图6  不同道次熔覆涂层的微观结构及相分布[60]
图7  超细共晶增强铁基涂层的TEM像和SAED花样[60]
图8  不同道次涂层的残余应力[60]
图9  涂层的硬度分布[60]
图10  纳米硬度和纳米压痕SEM像[60]
图11  涂层和基体的耐磨性[60]
CompoundHardness / HVWear rate
10-5 mm3·N-1·m-1
Present8500.92
M49532.1
HS-309252.3
M29283.1
HS-238533.9
WR68644.4
WR6 + VC9495.1
AISI 4207158.5
H1369712.9
AISI 43172920.6
表1  传统工具钢涂层和本研究涂层的硬度和耐磨性[68]
图12  颗粒增强马氏体涂层的微观结构分析[73]
图13  颗粒增强马氏体涂层熔覆层的显微组织[73]
图14  涂层的硬度分布[74]
图15  涂层的应力-应变曲线及断口形貌[74]
图16  不同熔覆速率下熔覆层的XRD谱[76]
图17  不同熔覆速率下熔覆层横截面形貌图[76]
图18  熔覆层中不同深度的XRD分析[77]
Distance to fusion line / mmPhases compositionAmorphous percentage / %Grain size / nm
0.570Fe2B, FeCo76.8~19.9
0.503Amorphous, NbC96.229.9-32.0
0.327Amorphous, NbC95.729.5-31.0
0.015FeCo11.9~6.4
SubstrateFe0~22.6
表2  熔覆层中不同区域非晶相含量与晶体相的晶粒尺寸[76]
图19  熔覆层横截面不同位置的显微硬度和形貌[80]
图20  基体和熔覆层不同区域的摩擦系数-时间曲线[76]
Region

Average friction

force / N

Wear mass

loss / g

Friction coefficient
RangeAverageRelative wear
Layer III206.470.0030.0974-0.11510.104860.28
Layer I and II206.560.0110.2285-0.25360.244120.66
Substrate204.210.0550.3424-0.38570.368161
表3  摩擦力、磨损失重和摩擦系数的数据统计[76]
1 Gao Y X, Du L Z, Huang C B, et al. Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences [J]. Appl. Surf. Sci., 2011, 257: 10195
2 Zhu S Y, Bi Q L, Yang J, et al. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites [J]. Tribol. Int., 2011, 44: 1182
3 Chao M J, Wang W L, Liang E J, et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 1918
4 Ma M M, Wang Z M, Zeng X Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition [J]. Mater. Sci. Eng., 2017, A685: 265
5 Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Opt. Laser Technol., 2021, 134: 106619
6 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Opt. Laser Technol., 2021, 138: 106915
7 Singh S, Goyal D K, Kumar P, et al. Laser cladding technique for erosive wear applications: A review [J]. Mater. Res. Express, 2020, 7: 012007
8 Gao W Y, Chang C, Li G, et al. Study on the laser cladding of FeCrNi coating [J]. Optik, 2019, 178: 950
9 Zhang Y, Han T F, Xiao M, et al. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nb x high-entropy alloy coating [J]. Optik, 2019, 198: 163316
10 Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on Fe-based substrate [J]. Surf. Technol., 2020, 49(3): 74
10 朱红梅, 胡际鹏, 李柏春 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020, 49(3): 74
11 Tong W H, Zhang X Y, Li W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer [J]. Acta Metall. Sin., 2020, 56: 1265
11 童文辉, 张新元, 李为轩 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响 [J]. 金属学报, 2020, 56: 1265
12 Xu Z F, Jiao J K, Zhang Z, et al. Research on laser repair process of Ni-based superalloy [J]. Mater. Rep., 2019, 33: 3196
12 徐子法, 焦俊科, 张 正 等. 镍基高温合金激光修复工艺研究 [J]. 材料导报, 2019, 33: 3196
13 Wang X H, Zhang M, Liu X M, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding [J]. Surf. Coat. Technol., 2008, 202: 3600
14 Katakam S, Santhanakrishnan S, Vora H, et al. Stress-induced selective nano-crystallization in laser-processed amorphous Fe-Si-B alloys [J]. Philos. Mag. Lett., 2012, 92: 617
15 Han B, Li M Y, Wang Y. Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel [J]. J. Mater. Eng. Perform., 2013, 22: 3749
16 Telasang G, Majumdar J D, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metall. Mater. Trans., 2015, 46A: 2309
17 Zhang H, Zou Y, Zou Z D, et al. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder [J]. Opt. Laser Technol., 2015, 65: 119
18 Dai S, Zuo D W, Fang C, et al. Characteration of laser cladded Fe-Mn-Cr alloy coatings modified by plasma nitriding [J]. Mater. Trans., 2016, 57: 539
19 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
20 Zhang Q M. An investigation on the applying fundamentals of powder feeding laser cladding [D]. Beijing: Changchun Institute of Optics and Fine Mechnics and Physics, Chinese Academy Sciences, 2000
20 张庆茂. 送粉激光熔覆应用基础理论的研究 [D]. 北京: 中国科学院长春光学精密机械与物理研究所, 2000
21 Liu Z X. Modeling and numerical simulation on laser remelting and cladding [D]. Xi'an: Northwestern Polytechnical University, 2003
21 刘振侠. 激光熔凝和激光熔覆的数学模型及数值分析 [D]. 西安: 西北工业大学, 2003
22 Toyserkani E, Khajepour A, Corbin S. Laser Cladding [M]. Boca Raton: CRC Press, 2005: 1
23 Hu H Q. Principle of Metal Solidification [M]. 2nd Ed., Beijing: China Machine Press, 2000: 1
23 胡汉启. 金属凝固原理[M]. 第2版. 北京: 机械工业出版社, 2000: 1
24 Wu X L, Chen G N. Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating [J]. Mater. Sci. Eng., 1999, A270: 183
25 Li Y M, Yang H O, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming [J]. Mater. Sci. Eng., 2003, A360: 18
26 Wu X L, Hong Y S. Fe-based thick amorphous-alloy coating by laser cladding [J]. Surf. Coat. Technol., 2001, 141: 141
27 Shan B, Chen J L, Chen S Y, et al. Laser cladding of Fe-based corrosion and wear-resistant alloy: Genetic design, microstructure, and properties [J], Surf. Coat. Technol., 2022, 433: 128117
28 Zhang W P, Liu S. Development of the effect of high energy laser on the rapid solidification structure and properties of the material surface [J]. Foundry, 2005, 54: 28
28 张维平, 刘 硕. 高能激光束对材料表层快速凝固组织及性能影响的研究进展 [J]. 铸造, 2005, 54: 28
29 Kagawa A, Ohta Y, Nakayama K. Mechanism of crack generation in carbide surface layer of laser-clad iron alloys [J]. Mater. Trans., 2002, 43: 1261
30 Yu J M, Lu X, Chao M J, et al. Investigation on microstructure and cracking susceptibility of laser-clad Fe-based alloy coatings [J]. Appl. Laser, 2006, 26: 175
30 余菊美, 卢 洵, 晁明举 等. 铁基合金激光熔覆层组织分布及开裂敏感性研究 [J]. 应用激光, 2006, 26: 175
31 Chen Z K, Liu M, Zeng D C, et al. Research on formation causes and elimination methods of the laser cladding cracks [J]. Laser J., 2009, 30(1): 55
31 陈志坤, 刘 敏, 曾德长 等. 激光熔覆裂纹的产生原因及消除方法探究 [J]. 激光杂志, 2009, 30(1): 55
32 Wang H P. Discussion on crack in laser-clad case [J]. Heat Treat., 2008, 23(6): 24
32 王慧萍. 关于激光熔覆层开裂问题的探讨 [J]. 热处理, 2008, 23(6): 24
33 Li M X, Zhang S H, Li H S, et al. Effect of nano-CeO2 on cobalt-based alloy laser coatings [J]. J. Mater. Process. Technol., 2008, 202: 107
34 Yang X Y, Peng X, Chen J, et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Appl. Surf. Sci., 2007, 253: 4420
35 Li S, Zeng X Y, Hu Q W. The mechanism of strengthening and toughening of crack-free Fe-based alloy with high hardness for laser cladding [J]. Trans. China Weld. Inst., 2008, 29(7): 101
35 李 胜, 曾晓雁, 胡乾午. 高硬度激光熔覆专用Fe基合金强韧化机理 [J]. 焊接学报, 2008, 29(7): 101
36 Li S, Hu Q W, Zeng X Y, et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer [J]. Appl. Surf. Sci., 2005, 240: 63
37 Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production [J]. Mater. Des., 2011, 32: 3248
38 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Composition design of nanocrystalline bainitic steels by diffusionless solid reaction [J]. Met. Mater. Int., 2014, 20: 405
39 Rementeria R, Jimenez J A, Allain S Y P, et al. Quantitative assessment of carbon allocation anomalies in low temperature bainite [J]. Acta Mater., 2017, 133: 333
40 Caballero F G, Allain S, Cornide J, et al. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application [J]. Mater. Des., 2013, 49: 667
41 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon [J]. Mater. Sci. Eng., 2012, A549: 185
42 García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
43 Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering [J]. Mater. Sci. Eng., 2014, A607: 569
44 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
45 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite [J]. ISIJ Int., 2003, 43: 1821
46 Guo Y B, Li Z G, Yao C W, et al. Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding [J]. Mater. Des., 2014, 63: 100
47 Guo Y B, Feng K, Lu F G, et al. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings [J]. Appl. Surf. Sci., 2015, 357: 309
48 Guo Y B, Li Z G, Hosseini S R E, et al. Effect of chemical segregation on nanobainitic transformation in laser cladded coatings [J]. Mater. Des., 2015, 88: 781
49 Guo Y B, Yao C W, Feng K, et al. Effect of isothermal temperature on growth behavior of nanostructured bainite in laser cladded coatings [J]. Materials, 2017, 10: 800
50 Gu S T, Chai G Z, Wu H P, et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis [J]. Mater. Des., 2012, 39: 72
51 Guo Y B, Li Z G, Li L Q, et al. The effects of micro-segregation on isothermal transformed nano bainitic microstructure and mechanical properties in laser cladded coatings [J]. Materials, 2020, 13: 3017
52 Jiang Y L, Fang J X, Ma G Z, et al. Microstructure and properties of an as-deposited and post treated high strength carbide-free bainite steel fabricated via laser powder deposition [J]. Mater. Sci. Eng., 2021, A824: 141791
53 Xiao B, Xing J D, Feng J, et al. A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both from ab initio calculations and experiments [J]. J. Phys., 2009, 42D: 115415
54 Zheng B C, Huang Z F, Xing J D, et al. Three-body abrasive wear behavior of cementite with different chromium concentrations [J]. Tribol. Lett., 2016, 61: 13
55 Zheng B C, Huang Z F, Xing J D, et al. Effect of chromium content on cementite-pearlite interaction of white cast iron during three-body abrasive wear [J]. Ind. Lubr. Tribol., 2017, 69: 863
56 Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry [J]. J. Alloys Compd., 1997, 257: 227
57 Shein I R, Medvedeva N I, Ivanovskii A L. Electronic and structural properties of cementite-type M3 X (M = Fe, Co, Ni; X = C or B) by first principles calculations [J]. Physica, 2006, 371B: 126
58 Röttger A, Weber S, Theisen W. Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applications [J]. Mater. Sci. Eng., 2012, A532: 511
59 Lin Y C, Chen H M, Chen Y C. Microstructures and wear properties of various clad layers of the Fe-W-C-B-Cr system [J]. Surf. Coat. Technol., 2013, 236: 410
60 Feng Y L, Pang X T, Feng K, et al. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B) [J]. J. Mater. Res. Technol., 2021, 15: 5597
61 Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
62 Dong R J. Metallurgical Principle [M]. Beijing: Machinery Industry Press, 1980: 1
62 董若景. 冶金原理 [M]. 北京: 机械工业出版社, 1980: 1
63 Werniewicz K, Kühn U, Mattern N, et al. New Fe-Cr-Mo-Ga-C composites with high compressive strength and large plasticity [J]. Acta Mater., 2007, 55: 3513
64 Berns H, Saltykova A, Röttger A, et al. Wear protection by Fe-B-C hard phases [J]. Steel Res. Int., 2011, 82: 786
65 Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J]. Acta Mater., 2011, 59: 5845
66 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
67 You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
68 Tuominen J, Näkki J, Pajukoski H, et al. Microstructural and abrasion wear characteristics of laser-clad tool steel coatings [J]. Surf. Eng., 2016, 32: 923
69 Luo W, Selvadurai U, Tillmann W. Effect of residual stress on the wear resistance of thermal spray coatings [J]. J. Therm. Spray Technol., 2016, 25: 321
70 Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel [J]. Tribol. Int., 2017, 115: 108
71 Goto H, Amamoto Y. Effect of varying load on wear resistance of carbon steel under unlubricated conditions [J]. Wear, 2003, 254: 1256
72 Liu Z L, Li Z L, Liu W D. Interface Electronic Structure and Interface Performance [M]. Beijing: Science Press, 2002: 1
72 刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 1
73 Yao C W. Study on alloy design, microstructure characteristics, and strength and toughness of Fe-based laser cladding layer [D]. Shanghai: Shanghai Jiao Tong University, 2010
73 姚成武. 铁基激光熔覆涂层的合金系设计、组织特征及强韧性研究 [D]. 上海: 上海交通大学, 2010
74 Yao C W, Huang J, Zhang P L, et al. Toughening of Fe-based laser-clad alloy coating [J]. Appl. Surf. Sci., 2011, 257: 2184
75 Cheng J B, Liang X B, Chen Y X, et al. High-temperature erosion resistance of FeBSiNb amorphous coatings deposited by arc spraying for boiler applications [J]. J. Therm. Spray Technol., 2013, 22: 820
76 Zhu Y Y. Study on FeCo-based amorphous coating using diode laser cladding processing [D]. Shanghai: Shanghai Jiao Tong University, 2013
76 朱彦彦. 半导体激光熔覆铁钴基非晶层的研究 [D]. 上海: 上海交通大学, 2013
77 Zhu Y Y, Li Z G, Li R F, et al. High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
78 Verdon C, Karimi A, Martin J L. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures [J]. Mater. Sci. Eng., 1998, A246: 11
79 Cullity B D. Elements of X-ray Diffraction [M]. 2nd Ed., Phillippines: Addison-Wesley Publishing Company Inc, 1978: 1
80 Zhu Y Y, Li Z G, Li R F, et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
81 Shen B L, Inoue A, Chang C T. Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability [J]. Appl. Phys. Lett., 2004, 85: 4911
[1] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[2] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[3] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[4] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[5] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
[8] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[9] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[10] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[11] 林英华, 雷永平, 符寒光, 林健. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响[J]. 金属学报, 2014, 50(12): 1520-1528.
[12] 林英华, 雷永平, 符寒光, 林健. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50(12): 1513-1519.
[13] 王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征[J]. 金属学报, 2013, 49(2): 221-228.
[14] 张晓伟 刘洪喜 蒋业华 王传琦. 激光原位合成TiN/Ti3Al基复合涂层[J]. 金属学报, 2011, 47(8): 1086-1093.
[15] 张晖 潘冶 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.