Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 241-248    DOI: 10.11900/0412.1961.2015.00283
  论文 本期目录 | 过刊浏览 |
基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*
刘彬1,贡凯1,乔岩欣1(),董世运2
1 江苏科技大学江苏省先进焊接技术重点实验室, 镇江 212003
2 装甲兵工程学院再制造技术重点实验室, 北京 100072
EVALUATION OF INFLUENCE OF PRESET CRACK BURIAL DEPTH ON STRESS OF LASER CLADDING COATING WITH METAL MAGNETIC MEMORY
Bin LIU1,Kai GONG1,Yanxin QIAO1(),Shiyun DONG2
1 Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
引用本文:

刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
Bin LIU, Kai GONG, Yanxin QIAO, Shiyun DONG. EVALUATION OF INFLUENCE OF PRESET CRACK BURIAL DEPTH ON STRESS OF LASER CLADDING COATING WITH METAL MAGNETIC MEMORY[J]. Acta Metall Sin, 2016, 52(2): 241-248.

全文: PDF(2597 KB)   HTML
摘要: 

利用金属磁记忆技术对裂纹/应力交互影响的Fe314合金激光熔覆层应力状态进行了评价. 基于“当量法”, 通过机加工方法在Fe314合金激光熔覆层中加工宽度恒定, 埋深分别为2.5, 3.0, 3.5和4.0 mm的规则矩形槽模拟不同埋深的裂纹, 研究了裂纹埋深对Fe314合金激光熔覆层磁场强度法向分量Hp(y)的影响规律. 利用SEM对Fe314合金激光熔覆层微观组织进行观察, 结合其微观组织特征分析了对Hp(y)的影响. 结合压磁理论, 澄清了金属磁记忆评价裂纹/应力交互作用下Fe314合金激光熔覆层应力状态的机理, 获得裂纹埋深、载荷及Hp(y)梯度变化值K间关系. 结果表明, 随载荷增大, 磁畴的有序转变导致Hp(y)曲线以过0点为中心呈顺时针转动, Hp(y)曲线斜率与幅值逐渐变大, 裂纹处K逐渐变大; 各向异性组织及层间界面引起应力集中, 从而导致Hp(y)曲线波动明显; 载荷相同时, 裂纹处K随裂纹埋深增大呈二次多项式规律减小; 裂纹埋深相同时, 裂纹处K随载荷增大而增大; 裂纹埋深越小, 载荷对裂纹处K影响越明显. 裂纹埋深大于3.0 mm时, Fe314合金激光熔覆层变形能力弱于45钢变形能力从而导致裂纹处K随载荷增大的速率较慢.

关键词 Fe314合金激光熔覆层金属磁记忆交互影响应力评价裂纹埋深    
Abstract

The stress state is important for properties and service life of mechanical parts, so finding an optimal method for evaluation of stress state is urgently needed to be solved. Because of convenience and fast detection speed, metal magnetic memory method has attracted attention of scholars, and some research findings also have been obtained. While current research mainly focuses on evaluation of stress state of single ferromagnetic material, the research on ferromagnetic composite material or ferromagnetic coating material is rare. Because of high energy density, laser cladding technology has been used widely in field of surface engineering. For this reason, the stress state of ferromagnetic laser cladding Fe314 alloy coating is evaluated with metal magnetic memory method. Distribution of stress state is usually affected by flaw including crack and gas hole in laser cladding Fe314 alloy coating, so the interaction influence of crack and load on evaluation of stress state of laser cladding Fe314 alloy coating is discussed in this work. Combing with equivalent method, different cracks, which were substituted with regular rectangular grooves, were machined in laser cladding Fe314 alloy coating. In order to obtain the relationship between burial depth and magnetic field intensity normal component Hp(y), the regular rectangular grooves that had the same width and different buried depths were machined. The microstructure of laser cladding coating was observed by SEM, and the influence of microstructure on magnetic field intensity normal component Hp(y) was also discussed. Based on magnetic-mechanical theory, interaction influence mechanism of crack and load on evaluation stress state of laser cladding coating with metal magnetic memory method was clarified, the relationship between burial depth of crack, load and gradient value K of magnetic field intensity normal component Hp(y) was also obtained. The results show that when zero crossing is seen as center, the magnetic field intensity normal component Hp(y) rotates clockwise as stress increases gradually, the slope and amplitude of Hp(y) curve increases, gradient value K of magnetic field intensity normal component Hp(y) corresponding to crack also increases as stress increases. Stress concentration in different zones is caused by anisotropic microstructure and layer interface of laser cladding Fe314 alloy coating, so the Hp(y) fluctuats obviously. When load is the same, gradient value K of magnetic field intensity normal component Hp(y) corresponding to crack decreases in the regular pattern of quadratic polynomial as burial depth increases. When burial depth is the same, gradient value K of magnetic field intensity normal component Hp(y) corresponding to crack increases as load increases. When burial depth is less, the influence of load on gradient value K is more obvious. When burial depth is bigger than 3.0 mm, advance the speed of gradient value K is relatively slow as load increases, and the difference in deformation capacity between laser cladding Fe314 alloy coating and 45 steel is seen as the main reason for above result.

Key wordslaser cladding Fe314 alloy coating    metal magnetic memory    interaction effect    stress evaluation    crack burial depth
收稿日期: 2015-05-27     
基金资助:*国家自然科学基金项目51305172和51401092资助
Material C Si Mn P Cr Ni B Fe
Laser cladding Fe314 alloy coating 0.10~0.15 1.00 - - 15.00 10.00 1.00 Bal.
45 steel 0.40~0.50 0.17~0.37 0.50~0.80 0.04 0.15 0.25 - Bal.
表1  实验材料的化学成分
Material Elastic limit
σe / MPa
Yield strength
σs / MPa
Ultimate tensile strength
σb / MPa
Elongation after fracture
δ / %
Laser cladding Fe314 alloy coating 580 610 875 15
45 steel 380 400 670 18
表2  室温下实验材料的拉伸性能
图1  激光熔覆路径示意图
图2  Fe314合金激光熔覆层磁场强度法向分量Hp(y)采集路径示意图
图3  不同提离高度时Fe314合金激光熔覆层的Hp(y)曲线
图4  不同载荷时Fe314合金激光熔覆层Hp(y)的表面分布
图5  不同载荷时a1路径上Fe314合金激光熔覆层的Hp(y)曲线
图6  Fe314合金激光熔覆层微观组织
图7  Hp(y)梯度变化值K与裂纹埋深关系曲线
图8  磁畴变化过程
[1] Xu F.PhD Dissertation, Zhejiang University, Hangzhou, 2013
[1] (徐帆. 浙江大学博士学位论文, 杭州, 2013)
[2] Tomohiro Y, Shinji Y, Masahiko H.NDT&E Int, 1996; 29: 263
[3] Dovbov A A.Therm Eng, 2001; 48: 289
[4] Zhang W M, Dong S P, Zhang Z J.Chin Mech Eng, 2003; 14: 892
[4] (张卫民, 董韶平, 张之敬. 中国机械工程, 2003; 14: 892)
[5] Liu D X. Master Thesis, Yanshan University, Qinhuangdao, 2010
[5] (刘东旭. 燕山大学硕士学位论文, 秦皇岛, 2010)
[6] Wang Z D, Yao K, Deng B, Ding K Q.NDT&E Int, 2010; 43: 513
[7] Iordache V E, Hug E, Buiron N.Mater Sci Eng, 2003; A359: 62
[8] Doubov A A.NDT&E Int, 2000; 33: 351
[9] Pearson J, Squire P T, Maylin M G, Gore J G.IEEE Trans Magn, 2000; 36: 3251
[10] Huang S L, Li L M, Shi K R, Wang X F.J Centr South Univ Technol, 2004; 11: 23
[11] Dai G, Wang W J, Li W.Nondestruct Test, 2002; 24: 262
[11] (戴光, 王文江, 李伟. 无损检测, 2002; 24: 262)
[12] Shi C L. PhD Dissertation, Harbin Institute of Technology, 2011
[12] (石常亮. 哈尔滨工业大学博士学位论文, 2011)
[13] Xu B S, Dong L H, Dong S Y, Xue N.Acta Metall Sin, 2011; 47: 257
[13] (徐滨士, 董丽虹, 董世运, 薛楠. 金属学报, 2011; 47: 257)
[14] Leng J C, Liu Y, Zhou G Q, Gao Y T.NDT&E Int, 2013; 55: 42
[15] Dong L H, Xu B S, Dong S Y, Li S, Chen Q Z, Wang D.NDT&E Int, 2009; 42: 323
[16] Shi C L, Dong S Y, Xu B S, He P.J Magn Magn Mater, 2010; 322: 413
[17] Qin Y J, Wu Y P, Zhang J F, Guo W M, Hong S, Chen L Y.Trans Nonferrous Met Soc China, 2015; 25: 1144
[18] Shan L, Wang X Y, Li J L, Li H, Lu X, Chen J M.Trans Nonferrous Met Soc China, 2015; 25: 1135
[19] Lu Z, Kim M S, Myoung S W, Lee J H, Jung Y G, Kin I S, Jo C Y.Trans Nonferrous Met Soc China, 2014; 24(S1): 29
[20] Wang Q Y, Bai S L, Liu Z D.Trans Nonferrous Met Soc China, 2014; 24: 1610
[21] He X L, Wei Y H, Hou L F, Yan Z F, Guo C L, Han P J.Trans Nonferrous Met Soc China, 2014; 24: 3429
[22] Ariely S.Surf Coat Technol, 1991; 45: 403
[23] Lin Y H, Lei Y P, Fu H G, Lin J.Acta Metall Sin, 2014; 50: 1513
[23] (林英华, 雷永平, 符寒光, 林健. 金属学报, 2014; 50: 1513)
[24] Feng S R, Tang H B, Zhang S Q, Wang H M.Trans Nonferrous Met Soc China, 2012; 22: 1667
[25] Liu B, Chen S J, Dong S Y, Fang C F, Hu Q X, Guo Y.Trans China Weld Inst, 2015; 36(8): 23
[25] (刘彬, 陈书锦, 董世运, 方臣富, 胡庆贤, 郭宇. 焊接学报, 2015; 36(8): 23)
[26] American Society for Nondestructive Testing, translated by Society for Nondestructive Testing. Nondestructive Testing Handbook-Electromagnetic Roll. Beijing: World Book Publising, 1994: 166
[26] (美国无损检测学会编, 无损检测学会译. 无损检测手册-电磁卷. 北京: 世界图书出版社, 1994: 166)
[27] Wang H P, Dong S Y, Dong L H, Xu B S.Mater Eng, 2010; (12): 35
[27] (王慧鹏, 董世运, 董丽虹, 徐滨士. 材料工程, 2010; (12): 35)
[28] Zhang W M, Liu H G, Yuan J J, Sun H T.Trans Beijing Inst Technol, 2005; 25: 1003
[28] (张卫民, 刘红光, 袁俊杰, 孙海涛. 北京理工大学学报, 2005; 25: 1003
[1] 佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.