Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 191-204    DOI: 10.11900/0412.1961.2020.00143
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控
刘健1,2, 彭钦1,2, 谢建新1,2()
1.北京科技大学 新材料技术研究院 北京 100083
2.北京科技大学 材料先进制备技术教育部重点实验室 北京 100083
Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy
LIU Jian1,2, PENG Qin1,2, XIE Jianxin1,2()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory for Advanced Materials Processing, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
Jian LIU, Qin PENG, Jianxin XIE. Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy[J]. Acta Metall Sin, 2021, 57(2): 191-204.

全文: PDF(6355 KB)   HTML
摘要: 

采用OM和SEM对选区激光熔化René 88DT高温合金显微组织进行了表征,分析了制备参数对晶粒组织及冶金缺陷的影响。结果表明,制备参数可以影响合金凝固过程中胞状枝晶的择优生长方向,进而影响晶粒的形貌和尺寸。在低热输入以及67°层间扫描转角条件下,不同取向的枝晶相互竞争生长,使试样的组织呈现近等轴晶;采用高热输入以及0°层间扫描转角制备的试样,因其枝晶能够跨越多个沉积层连续外延生长而形成了柱状晶组织。采用90°层间扫描转角制备的试样晶粒组织为柱状晶,但其长径比低于0°层间扫描转角制备的试样,且由于金属蒸气烟尘的遮蔽作用导致试样在相互垂直的扫描方向上产生了各向异性。试样内部的冶金缺陷主要为低熔点共晶液化所导致的沿晶界分布的凝固裂纹,等轴晶组织阻碍凝固裂纹的扩展能力远高于柱状晶组织,后者裂纹密度是前者的22倍。考虑成形质量及服役条件,67°层间扫描转角以及较低的热输入是适合René 88DT合金的选区激光熔化制备参数。

关键词 选区激光熔化René 88DT高温合金晶粒组织冶金缺陷制备参数    
Abstract

Columnar grain and hot crack restrict the performance of laser melting deposited René 88DT superalloy when applied to turbine disks, requiring equiaxed grain to improve the fatigue property. Selective laser melting can fabricate material with low composition segregation, reduced defects, and equiaxed or near-equiaxed grains due to the fast cooling rate and vastly varied local heat flow direction during processing. In this study, a selective laser melted René 88DT was fabricated under variable processing parameters. The formation mechanism and control methods of grain structure and metallurgical defects were investigated. Results showed that changing the processing parameters can affect the preferred growth direction of crystal; thus, affecting the grain morphology and size. Processed with low heat input and 67° scan vectors rotation between deposited layers, cellular dendrites with different orientations grow competitively with each other, leading to the formation of near-equiaxed grains. The cellular dendrites can grow epitaxially across multiple deposited layers due to high heat input and 0° scan vector rotation, forming columnar grains. The columnar grains with a relatively low aspect ratio can be fabricated with 90° scan vectors rotation. However, anisotropy exists between the two orthogonal scanning directions due to the shielding effect of metal vapor dust. The primary defects in specimens are solidification cracks along grain boundaries caused by remelting of low-melting-point eutectic. Specimens with equiaxed grains showed much better ability in preventing solidification cracks from propagation than that with columnar grains. The defect density in the columnar grains is about 21 times higher than the equiaxed grains. Suitable processing conditions for selective laser melted René 88DT superalloys are low heat input and 67° scan vectors rotation based on the forming quality and service conditions.

Key wordsselective laser melting    René 88DT superalloy    grain structure    metallurgical defect    processing parameter
收稿日期: 2020-05-06     
ZTFLH:  TN249  
基金资助:中央高校基本科研业务费项目(FRF-TP-18-092A1)
作者简介: 刘 健,男,1989年生,博士
图1  René 88DT高温合金粉末形貌
Specimen No.PVADefect density / %
Wmm·s-1(°)Incomplete fusionPoreCrack
1200960900.5130.0250.054
2250960900.0180.0110.107
33009609000.0150.403
43509609000.0170.485
54009609000.0230.771
63007209000.0500.646
73008409000.0180.397
830010809000.0270.187
930012009000.0120.069
10300960000.0302.213
113009606700.0120.101
表1  选区激光熔化成形实验参数、形成的缺陷类型及缺陷密度
图2  不同层间扫描转角成形示意图(a) 0° (b) 67° (c) 90°
图3  选区激光熔化René 88DT高温合金试样的缺陷形貌(a) No.1, P=200 W (b) No.2, P=250 W (c) No.5, P=400 W(d) No.6, V=720 mm/s (e) No.3, V=960 mm/s (f) No.9, V=1200 mm/s(g) No.10, A=0° (h) No.11, A=67°
图4  选区激光熔化René 88DT高温合金No.5试样中的裂纹形貌(a) low magnification(b) morphology showing the boundary of deposition track (dash line)(c) high magnification of cracks
RegionCrCoMoWNbAlTiONi
Matrix15.8312.315.153.721.772.914.17-54.14
Crack11.5610.543.362.310.402.392.8720.7543.73
表2  选区激光熔化成形René 88DT高温合金试样EDS分析结果 (mass fraction / %)
图5  采用不同层间扫描转角制备的René 88DT高温合金试样XOZ面沉积道形貌(a) 0° (b) 67° (c) 90°
图6  采用不同层间扫描转角制备的René 88DT高温合金试样晶粒组织(a-c) 0° (d-f) 67° (g-i) 90°
图7  采用不同激光功率制备的René 88DT高温合金试样XOZ面沉积道形貌及沉积道深宽比和底部曲率半径随激光功率的变化关系
图8  选区激光熔化René 88DT镍基高温合金试样中的未熔化粉末形貌
图9  采用不同激光功率制备的René 88DT高温合金试样晶粒组织(a-c) 200 W (d-f) 300 W (g-i) 400W
图10  采用不同扫描速率制备的René 88DT高温合金试样XOZ面沉积道形貌及沉积道深宽比和底部曲率半径随扫描速率的变化关系
图11  采用不同扫描速率制备的René 88DT高温合金试样晶粒组织(a-c) 720 mm/s (d-f) 960 mm/s (g-i) 1200 mm/s
图12  选区激光熔化René 88DT镍基高温合金No.3试样显微组织
图13  沉积道的深宽比和底部曲率半径随选区激光熔化体能量密度(E)的变化关系
图14  不同热输入条件下René 88DT高温合金试样的枝晶生长及晶粒形成规律
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 256
2 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
2 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
3 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
3 张国庆, 张义文, 郑 亮等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
4 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT [J]. Mater. Sci. Eng., 2002, A332: 318
5 Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96 [J]. Int. J. Fatigue, 2019, 118: 237
6 Shi Y, Yang D D, Yang X G, et al. The effect of inclusion factors on fatigue life and fracture-mechanics-based life method for a P/M superalloy at elevated temperature [J]. Int. J. Fatigue, 2020, 131: 105365
7 Ning Y Q, Zhou C, Liang H Q, et al. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs) [J]. Mater. Sci. Eng., 2016, A652: 84
8 Benjamin J S, Larson J M. Powder metallurgy techniques applied to superalloys [J]. J. Aircr., 1977, 14: 613
9 Chlebus E, Gruber K, Kuźnicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng., 2015, A639: 647
10 Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713
11 Liang Y J, Cheng X, Wang H M. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification [J]. Acta Mater., 2016, 118: 17
12 Zhao X M, Lin X, Chen J. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
13 Zhao X M, Chen J, He F, et al. The cracking mechanism of Rene88DT superalloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 216
13 赵晓明, 陈 静, 何 飞等. 激光快速成形Rene88DT高温合金开裂机理研究 [J]. 稀有金属材料与工程, 2007, 36: 216
14 Li N, Kong H P, Du B R, et al. Analysis of microstructure and defects of FGH96 superalloy manufactured by laser rapid prototyping [J]. Fail. Anal. Prev., 2016, 11: 124
14 李 楠, 孔焕平, 杜博睿等. 激光快速成型FGH96高温合金的显微组织及缺陷分析 [J]. 失效分析与预防, 2016, 11: 124
15 Zhang H Y, Zhang A F, He B, et al. Investigation on the microstructure and segregation of superalloy FGH96 by direct laser forming [J]. Appl. Mech. Mater., 2014, 464: 58
16 Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting [J]. Acta Metall. Sin., 2018, 54: 393
16 文 舒, 董安平, 陆燕玲等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 [J]. 金属学报, 2018, 54: 393
17 Wu H Y, Zhang D, Yang B B, et al. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36: 7
18 Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing [J]. Int. Mater. Rev., 2016, 61: 315
19 Huang W D. The research progress of 3D printing technology [J]. J. New Ind., 2016, 6(3): 53
19 黄卫东. 材料3D打印技术的研究进展 [J]. 新型工业化, 2016, 6(3): 53
20 Yang H O, Zhao Y F, Xu J J, et al. As-deposited microstructures of Rene88DT nickel-base superalloy by laser solid forming [J]. J. Netshape Form. Eng., 2019, 11(4): 9
20 杨海欧, 赵宇凡, 许建军等. 激光立体成形Rene88DT镍基高温合金沉积态组织研究 [J]. 精密成形工程, 2019, 11(4): 9
21 Liu S, Zhang X, Yu H X, et al. Effect of laser melting deposition process on microstructure and property for FGH96 [J]. Aeronaut. Manuf. Technol., 2019, 62(1-2): 72
21 刘 帅, 张 雪, 于海鑫等. FGH96激光熔化沉积成形过程对组织与性能的影响 [J]. 航空制造技术, 2019, 62(1-2): 72
22 Guo J T, Zhou L Z, Qin X Z. Phase transformations and their mechanisms in Fe- and Ni-base superalloys [J]. Chin. J. Nonferrous Met., 2011, 21: 476
22 郭建亭, 周兰章, 秦学智. 铁基和镍基高温合金的相变规律与机理 [J]. 中国有色金属学报, 2011, 21: 476
23 Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
24 Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J]. J. Alloys Compd., 2014, 615: 338
25 Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process [J]. Addit. Manuf., 2016, 10: 1
26 Wang H M. Materials􀆳 fundamental issues of laser additive manufacturing for high-performance large metallic component [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
26 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
27 Tin S, Pollock T M. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbide precipitation and rayleigh numbers [J]. Metall. Mater. Trans., 2003, 34A: 1953
28 Zhong M L, Sun H Q, Liu W J, et al. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy [J]. Scr. Mater., 2005, 53: 159
29 Zhang J, Li S, Wei Q S, et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting [J]. Chin. J. Rare Met., 2015, 39: 961
29 张 洁, 李 帅, 魏青松等. 激光选区熔化Inconel 625合金开裂行为及抑制研究 [J]. 稀有金属, 2015, 39: 961
30 Çam G, Koçak M. Progress in joining of advanced materials [J]. Int. Mater. Rev., 1998, 43: 1
31 Yang J, Huang W D, Chen J, et al. Residual stress on laser rapid forming metal part [J]. Appl. Laser, 2004, 24: 5
31 杨 健, 黄卫东, 陈 静等. 激光快速成形金属零件的残余应力 [J]. 应用激光, 2004, 24: 5
[1] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[7] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[12] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[13] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[14] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.