|
|
无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较 |
张海军1,2, 邱实3, 孙志梅3, 胡青苗1( ), 杨锐1 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 3 北京航空航天大学材料科学与工程学院 北京 100191 |
|
First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA |
ZHANG Haijun1,2, QIU Shi3, SUN Zhimei3, HU Qingmiao1( ), YANG Rui1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
引用本文:
张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
Haijun ZHANG,
Shi QIU,
Zhimei SUN,
Qingmiao HU,
Rui YANG.
First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. Acta Metall Sin, 2020, 56(9): 1304-1312.
[1] |
Brunette D M, Tengvall P, Textor M, et al. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications [M]. Berlin: Springer, 2001: 703
|
[2] |
Woodman J L, Jacobs J J, Galante J O, et al. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study [J]. J. Orthop. Res., 1984, 1: 421
doi: 10.1002/jor.1100010411
pmid: 6491791
|
[3] |
Mohammadi S, Wictorin L, Ericson L E, et al. Cast titanium as implant material [J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
doi: 10.1007/BF00123367
|
[4] |
Semlitsch M F, Weber H, Streicher R M, et al. Joint replacement components made of hot-forged and surface-treated Ti-6A1-7Nb alloy [J]. Biomaterials, 1992, 13: 781
doi: 10.1016/0142-9612(92)90018-j
pmid: 1391401
|
[5] |
Bordji K, Jouzeau J Y, Mainard D, et al. Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts [J]. Biomaterials, 1996, 17: 929
doi: 10.1016/0142-9612(96)83289-3
pmid: 8718939
|
[6] |
Yumoto S, Ohashi H, Nagai H, et al. Aluminum neurotoxicity in the rat brain [J]. Int. J. PIXE, 1992, 2: 493
doi: 10.1142/S0129083592000531
|
[7] |
Rao S, Ushida T, Tateishi T, et al. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells [J]. Biomed. Mater. Eng., 1996, 6: 79
pmid: 8761518
|
[8] |
Walker P R, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin [J]. Biochemistry, 1989, 28: 3911
doi: 10.1021/bi00435a043
pmid: 2752000
|
[9] |
Sarkar B. Biological Aspects of Metals and Metal-Related Diseases [M]. New York: Raven Press, 1983: 209
|
[10] |
Sumner D R, Galante J O. Determinants of stress shielding: Design versus materials versus interface [J]. Clin. Orthop. Relat. Res., 1992, 274: 202
|
[11] |
Engh C A, Bobyn J D. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1988, 231: 7
|
[12] |
Wang K. The use of titanium for medical applications in the USA [J]. Mater. Sci. Eng., 1996, A213: 134
|
[13] |
Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [J]. Clin. Orthop. Relat. Res., 1992, 274: 124
|
[14] |
Khan M A, Williams R L, Williams D M. In-vitro corrosion and wear of titanium alloys in the biological environment [J]. Biomaterials, 1996, 17: 2117
doi: 10.1016/0142-9612(96)00029-4
pmid: 8922597
|
[15] |
Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
|
[16] |
Tane M, Akita S, Nakano T, et al. Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals [J]. Acta Mater., 2008, 56: 2586
|
[17] |
Zhang M H, Yu Z T, Zhou L, et al. Biocompatibility evaluation of β-type titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1815
|
[17] |
(张明华, 于振涛, 周 廉等. β型钛合金材料的生物相容性评价 [J]. 稀有金属材料与工程, 2007, 36: 1815)
|
[18] |
Song Y, Xu D S, Yang R, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys [J]. Mater. Sci. Eng., 1999, A260: 269.
|
[19] |
Sun J, Yao Q, Xing H, et al. Elastic properties of β, α'' and ω metastable phases in Ti-Nb alloy from first-principles [J]. J. Phys. Condens. Matter, 2007, 19: 486215
doi: 10.1088/0953-8984/19/48/486215
|
[20] |
Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys [J]. Phys. Rev., 2004, 70B: 174113
|
[21] |
Gutiérrez Moreno J J, Papageorgiou D G, Evangelakis G A, et al. An abinitio study of the structural and mechanical alterations of Ti-Nb alloys [J]. J. Appl. Phys., 2018, 124: 245102
doi: 10.1063/1.5025926
|
[22] |
Gutiérrez Moreno J J, Bonisch M, Panagiotopoulos N T, et al. Ab-initio and experimental study of phase stability of Ti-Nb alloys [J]. J. Alloys Compd., 2017, 696: 481
doi: 10.1016/j.jallcom.2016.11.231
|
[23] |
Dai J H, Song Y, Li W, et al. Influence of alloying elements Nb, Zr, Sn, and oxygen on structural stability and elastic properties of the Ti2448 alloy [J]. Phys. Rev., 2014, 89B: 014103
|
[24] |
Zhou W C, Sahara R, Tsuchiya K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X=Mo, Nb, Al, Sn, Zr, Fe, Co, and O) [J]. J. Alloys Compd., 2017, 727: 579
doi: 10.1016/j.jallcom.2017.08.128
|
[25] |
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
|
[26] |
Wei S H, Ferreira L G, Bernard J E, alel. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
|
[27] |
Soven P. Coherent-potential model of substitutional disordered alloys [J]. Phys. Rev., 1967, 156: 809
doi: 10.1103/PhysRev.156.809
|
[28] |
Gyorffy B L. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys [J]. Phys. Rev., 1972, 5B: 2382
|
[29] |
Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM=V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
doi: 10.1016/j.matdes.2016.07.120
|
[30] |
Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
doi: 10.1063/1.2988270
|
[31] |
Zhao Y F, Fu Y C, Hu Q M, et al. First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1-xVxand Ti1-xNbx alloys [J]. Acta Metall. Sin., 2009, 45: 1042
|
[31] |
(赵宇飞, 符跃春, 胡青苗等. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究 [J]. 金属学报, 2009, 45: 1042)
|
[32] |
Vitos L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications [M]. London: Springer, 2007: 247
|
[33] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
[34] |
Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687
doi: 10.1103/PhysRev.114.687
|
[35] |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
|
[36] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
[37] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
|
[38] |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
[39] |
Van de Walle A, Tiwary P, De Jong M, et al. Efficient stochastic generation of special quasirandom structures [J]. Calphad, 2013, 42: 13
doi: 10.1016/j.calphad.2013.06.006
|
[40] |
Birch F. Finite elastic strain of cubic crystals [J]. Phys. Rev., 1947, 71: 809
doi: 10.1103/PhysRev.71.809
|
[41] |
Von Pezold J, Dick A, Friák M, et al. Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti [J]. Phys. Rev., 2010, 81: 094203
doi: 10.1103/PhysRevB.81.094203
|
[42] |
Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
|
[43] |
Holec D, Tasnádi F, Wagner P, et al. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions [J]. Phys. Rev., 2014, 90B: 184106
|
[44] |
Hariharan Y, Janawadkar M P, Radhakrishnan T S, et al. Structure property correlations in superconducting Ti-Nb alloys [J]. Pramana, 1986, 26: 513
doi: 10.1007/BF02880911
|
[45] |
Kim H Y, Ikehara Y, Kim J I, et al. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys [J]. Acta Mater., 2006, 54: 2419
doi: 10.1016/j.actamat.2006.01.019
|
[46] |
Dobromyslov A V, Elkin V A. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods [J]. Scr. Mater., 2001, 44: 905
doi: 10.1016/S1359-6462(00)00694-1
|
[47] |
Tian L Y, Hu Q M, Yang R, et al. Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti-Al [J]. J. Phys. Condens. Matter, 2015, 27: 315702
doi: 10.1088/0953-8984/27/31/315702
pmid: 26202339
|
[48] |
Tian L Y, Ye L H, Hu Q M, et al. CPA descriptions of random Cu-Au alloys in comparison with SQS approach [J]. Comput. Mater. Sci., 2017, 128: 302
doi: 10.1016/j.commatsci.2016.11.045
|
[49] |
Ye L H, Wang H, Zhou G, et al. Phase stability of TiAl-X (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys [J]. J. Alloys Compd., 2020, 819: 153291
doi: 10.1016/j.jallcom.2019.153291
|
[50] |
Hao Y L, Wang H L, Li T, et al. Superelasticity and tunable thermal expansion across a wide temperature range [J]. J. Mater. Sci. Technol., 2016, 32: 705
doi: 10.1016/j.jmst.2016.06.017
|
[51] |
Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
|
[52] |
Reid C N, Routbort J L, Maynard R A. Elastic constants of Ti-40at.% Nb at 298 °K [J]. J. Appl. Phys., 1973, 44: 1398
|
[53] |
Hermann R, Hermann H, Calin M, et al. Elastic constants of single crystalline β-Ti70Nb30 [J]. Scr. Mater., 2012, 66: 198
|
[54] |
Jeong H W, Yoo Y S, Lee Y T, et al. Elastic softening behavior of Ti-Nb single crystal near martensitic transformation temperature [J]. J. Appl. Phys., 2010, 108: 063515
|
[55] |
Born M. On the stability of crystal lattices. I [J]. Math. Proc. Cambridge Philos. Soc., 1940, 36: 160
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|