金属学报, 2020, 56(9): 1304-1312 DOI: 10.11900/0412.1961.2020.00015

无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较

张海军1,2, 邱实3, 孙志梅3, 胡青苗,1, 杨锐1

1 中国科学院金属研究所 沈阳 110016

2 中国科学技术大学材料科学与工程学院 沈阳 110016

3 北京航空航天大学材料科学与工程学院 北京 100191

First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA

ZHANG Haijun1,2, QIU Shi3, SUN Zhimei3, HU Qingmiao,1, YANG Rui1

1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China

通讯作者: 胡青苗,qmhu@imr.ac.cn,主要从事复杂工程合金成分-结构-组织-性能关系的第一性原理研究

责任编辑: 李海兰

收稿日期: 2020-01-10   修回日期: 2020-02-24   网络出版日期: 2020-09-11

基金资助: 国家重点研发计划项目.  2016YFB0701301
国家自然科学基金项目.  91860107
国家重点基础研究发展计划项目.  2014CB644001

Corresponding authors: HU Qingmiao, professor, Tel: (024)23971813, E-mail:qmhu@imr.ac.cn

Received: 2020-01-10   Revised: 2020-02-24   Online: 2020-09-11

Fund supported: National Key Research and Development Program of China.  2016YFB0701301
National Natural Science Foundation of China.  91860107
National Basic Research Program of China.  2014CB644001

作者简介 About authors

张海军,男,1991年生,博士

摘要

采用第一性原理方法(VASP及EMTO)结合特殊准无序结构(SQS)和相干势近似(CPA)的方法,对比研究了bcc结构β-Ti1-xNbx无序合金的晶格参数、自由能及弹性常数随成分x的变化。结果表明,VASP-SQS及EMTO-CPA计算得到的晶格参数符合良好,均随Nb含量增加而增加,局域晶格弛豫对晶格参数的影响可以忽略;EMTO-CPA自由能计算预测β-Ti1-xNbx中存在相分解,但VASP-SQS计算因依赖于具体SQS结构,难以合理地描述合金的相分解。EMTO-CPA及无弛豫VASP-SQS计算得到的弹性常数C11C12随Nb含量增加而增大,C44减小,但EMTO-CPA高估了合金的弹性稳定性;低Nb含量时,由于β-Ti1-xNbx的bcc结构不稳定,导致VASP-SQS计算得到的局域晶格畸变显著增加,使得考虑原子弛豫的VASP-SQS计算得到的自由能及弹性常数随Nb含量的变化偏离正常趋势。

关键词: 钛合金 ; 无序合金 ; 特殊准无序结构 ; 相干势近似 ; 弹性常数 ; 第一性原理计算

Abstract

Elastic modulus is one of the key properties for the application of biomedical β titanium alloy as human bone replacement because the elastic modulus of the alloy has to match that of the bone so as to avoid the stress shielding effect. Alloying of Nb is commonly used in biomedical β titanium alloys. In the present work, the lattice parameter, free energy and elastic modulus of β-Ti1-xNbx alloy were investigated by using first-principles method based on density functional theory. The random distribution of Nb atoms in the alloy were described by using both special quasirandom structure (SQS) and the coherent potential approximation (CPA) techniques, in combination with first principles plane-wave pseudopotential (VASP) and exact muffin-tin orbital (EMTO) methods, respectively. The results showed that the lattice constants from both VASP-SQS and EMTO-CPA calculations increase linearly with Nb content x, while the influence of the local lattice distortion is negligible. The calculations of the free energies demonstrated that EMTO-CPA predicts reasonably the phase decomposition of β-Ti1-xNbx at relatively low temperature whereas VASP-SQS does not, which might be ascribed to the fact that the free energy depends strongly on the detailed SQS structures. The elastic constants C11 and C12 calculated by using EMTO-CPA and VASP-SQS without atomic relaxation increase with Nb content whereas C44 decreases. EMTO-CPA overestimates the elastic stability of β-Ti1-xNbx. At low Nb content, the local lattice distortion is abnormally large due to the lattice instability of the β-Ti1-xNbx, making the free energy and elastic constant against x from VASP-SQS calculations with atomic relaxation deviate significantly from the general trend.

Keywords: titanium alloy ; random solid solution ; special quasirandom structure ; coherent potential approximation ; elastic constant ; first-principles calculation

PDF (2028KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较. 金属学报[J], 2020, 56(9): 1304-1312 DOI:10.11900/0412.1961.2020.00015

ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA. Acta Metallurgica Sinica[J], 2020, 56(9): 1304-1312 DOI:10.11900/0412.1961.2020.00015

Ti及钛合金凭借其优良的生物相容性、综合力学性能和工艺性能已成为人工关节、骨创伤产品、心血管支架等医用植入材料的首选[1]。第一代生物医用钛合金为Ti-6Al-4V,由于V的毒性效应以及较高的溶解度,使得植入物会影响生物体的酵素系统[2,3]。第二代新型α+β型钛合金以Ti-6Al-7Nb[4]和Ti-5Al-2.5Fe[5]为代表,其中的Al会诱发阿尔兹海默脑脊髓病,还会引起骨质疏松等[6~9]。Ti-6Al-7Nb和Ti-5Al-2.5Fe的弹性模量为骨弹性模量的4~10倍,这会阻止载荷向临近的骨组织传递,导致骨质疏松甚至骨吸收,形成“应力屏蔽”现象[10~14]。20世纪90年代以来,bcc结构β型钛合金以其低于α型和α+β型钛合金的弹性模量、较高的强度和抗腐蚀性等优异性能,成为生物医用材料的首要研究方向[15]。Nb是新型β型生物医用钛合金中常用合金元素。一方面,从β-Ti-Nb系合金中观测到了迄今为止某方向上最低的Young's模量35 GPa[16],与人体骨骼弹性模量接近,极大降低了产生“应力屏蔽”的风险。另外,Nb元素具有良好的生物相容性、较小的毒性,被认为是安全的生物医用合金元素[17]

由于弹性模量是β钛合金作为人体骨骼替代材料的关键性能之一,近20年来,研究者对钛合金的弹性模量进行了大量的理论计算研究。例如,1999年,Song等[18]采用第一原理离散变分Xα方法,计算了合金原子替换Ti团簇中一个Ti原子时团簇体模量的变化,提出了Nb、Mo、Zr、Ta等可作为低模量钛合金的合金化元素。Sun等[19]用第一原理平面波赝势方法计算了Ti-25%Nb (原子分数,下同)合金的单晶弹性常数。Ikehata等[20]进一步考虑了合金元素含量对β钛合金弹性常数的影响,采用第一原理平面波赝势方法计算了假想有序结构Ti0.75X0.25、Ti0.5X0.5以及Ti0.25X0.75 (X=V、Nb、Ta、Mo、W)合金的弹性常数。Gutiérrez Moreno等[21,22]尝试采用能量最小化方法确定Ti1-xNbx (x<31.5%)合金的最稳定结构,并采用第一原理全势缀加平面波计算了其弹性常数。在上述研究中,计算所采用的合金结构模型均不能反映合金原子在实际合金体系中的无序分布特征。Dai等[23]对Ti2448合金的弹性常数计算表明,合金中合金原子的不同分布构型对弹性常数有显著影响。因此,非无序的结构模型可能使得计算得到的弹性常数偏离实际值。为准确描述合金原子在基体中的无序分布,Zhou等[24]构造Ti1-xXx (x<50%)合金的特殊准无序结构(special quasirandom structure,SQS) [25,26],并采用第一原理平面波赝势方法计算其弹性性质。本课题组[29~31]曾采用第一原理精确Muffin-Tin轨道方法结合相干势近似(coherent potential approximation,CPA)方法[27,28]计算了一系列无序钛合金的弹性常数。

作为描述无序合金最常用的方法,SQS及CPA各有其优缺点。SQS通过构建特殊原子占位的晶胞,使得其原子关联函数在一定截断内与绝对无序晶胞的差值最小化,以模拟无序合金。在SQS结构模型中,可以通过最小化原子间的Hellmann-Feynman力来弛豫原子位置,从而考虑进合金原子的局域晶格畸变。但由于原子位置的准无序分布,SQS晶胞对称性比较低,使得计算量大幅增加。另外,SQS可实现的合金成分受限于晶胞大小,不能模拟合金随成分的连续变化。CPA方法采用单格点近似模拟合金中原子的无序分布,形象地说,CPA的基本思想是用一个等价有效介质来描述无序分布的体系Ax1Bx2Cx3Dx4,A、B、C等代表原子种类,下标xi代表相应的原子分数。在这一有效介质中,每个格点为相同的按合金成分“混合”的赝原子M=ixiX (X=A, B, C, D, )占据。因此,可以在较小的高对称晶胞内实现合金成分的连续变化,计算量很小。CPA的缺点是无法考虑合金化引起的局域晶格畸变对计算结果的影响。SQS可以与任意第一原理方法结合使用,而CPA方法只能与采用Green函数技术求解Kohn-Sham方程的第一原理方法结合使用。因此,有必要系统地比较SQS及CPA 2种方法在无序β钛合金弹性模量等性质计算中的可靠性及精确性。

基于上述研究背景,本工作以bcc结构无序β-Ti1-xNbx合金为研究对象,采用SQS以及CPA 2种近似方法,对比研究了合金的晶格参数、自由能及弹性常数随成分x的变化,分析了2种方法在无序β-Ti1-xNbx合金中应用的可靠性及精确性。

1 计算方法与参数设置

对于CPA方法,本工作采用的第一性原理计算方法为基于密度泛函理论的精确Muffin-Tin轨道(exact Muffin-Tin orbitals,EMTO)方法[32]。在计算中,采用了标量相对论近似和软核近似。电子交换关联泛函采用Perderw、Burke和Ernzerhof (PBE)参数化的广义梯度近似(generalized gradient approximation,GGA)[33]。选取s、p、d和f 4个轨道作为基函数。Brillouin区k点取样为均匀分布,k点密度为13×13×13。为计算弹性常数,首先用Morse状态方程[34]来拟合不同成分下的合金的体积-能量,以获得平衡体积和体模量。通过对平衡体积施加一系列应变并计算能量,根据能量-应变的关系拟合出相应的弹性常数。本工作选取了如下正交型:

εo000-εo000εo21-εo2

和单斜型:

0εm0εm0000εm21-εm2

应变张量。式中,εoεm分别为正交应变和单斜应变时的应变大小。立方晶体的剪切弹性模量C'C44可通过对如下的能量-应变公式进行拟合得到:

Eεo=E0+2V0C'εo2+ϕεo4
Eεm=E0+2V0C44εm2+ϕεm4

式中,E(εo)和E(εm)为正交应变和单斜应变下的能量,E(0)为未加应变时的能量,V0为平衡体积,ϕεo4ϕεm4为忽略不计的高阶项。最终从C'=(C11-C12)/2和体模量B=(C11+2C12)/3可以得到单独的弹性常数C11C12。应变εoεm范围为0~0.05,以0.01为间隔。

对于SQS,采用第一原理平面波赝势方法VASP (Vienna ab-initio simulation package)软件包[35~37]。贋势产生采用全电子投影缀加波方法(projector augmented-wave)[38]。电子交换关联泛函仍为GGA-PBE。平面波截断能设定为400 eV。选取了包含54个原子的3×3×3倍bcc单胞的超晶胞。超晶胞中Nb原子的数目为0~54,以6为间隔。合金原子的准无序分布由Monte-Carlo方法[39]产生。采用Monkhorst-Pack方法对Brillouin区k点进行取样,密度为6×6×6。电子步自洽循环的能量收敛判据为1.0×10-5 eV。离子步收敛判据为原子间作用力小于0.01 eV/Å。弹性常数计算中,通过Birch-Murnaghan状态方程[40]进行能量-体积拟合,从而得到每个成分对应的平衡体积。通过施加如式(5)所示的应变计算其应力:

ε000012ε012ε0

式中,ε为应变,取值范围为-0.004、-0.002、0、0.002、0.004。再根据应力应变关系得到3个弹性常数:

σ1=C11ε;σ2=σ3=C12ε;σ4=C44ε

式中,σ1σ2σ3σ4分别为不同方向对应的应力。

合金原子的准无序分布降低了SQS晶胞的对称性,增加了独立弹性常数分量。但对于基体为立方的无序合金体系,即使采用SQS计算其弹性常数,非立方弹性常数分量一般非常小,可以忽略。因此,可采用改变应变张量的方向计算弹性常数,然后对相关立方弹性常数分量平均的方法,获得无序合金的弹性常数[41~43],即,除式(5)外,再施加应变张量:

0012ε0ε012ε00

012ε012ε0000ε

计算相关立方弹性常数分量C22C33C13C23C55C66,并按如下公式计算平均弹性常数:

C11¯=13C11+C22+C33
C12¯=13C12+C23+C13
C44¯=13C44+C55+C66

在VASP-SQS计算中,采取了考虑原子结构弛豫及不考虑原子结构弛豫2种情况,以确定局域原子结构弛豫对计算结果的影响。

2 计算结果与讨论

2.1 晶格常数

图1给出了无序TiNb合金的晶格常数随Nb含量的变化曲线。由图可知,随着Nb含量的增加,无序TiNb合金的晶格常数近似线性增大,但增加的幅度较小(由纯Ti到纯Nb,仅增加约1.8%)。这是因为Nb的原子半径略大于Ti的原子半径。考虑局域原子弛豫与不考虑局域原子弛豫的VASP-SQS计算结果差别不大,说明局域原子弛豫对晶格参数的影响较小。VASP-SQS和EMTO-CPA的结果吻合良好。图1中还给出了文献[44~46]报道的实验晶格常数。由图可见,实验结果和计算结果趋势相同。计算所得的晶格常数与实验测量的结果误差不超过0.6%。

图1

图1   β-Ti1-xNbx合金的晶格常数随Nb含量的变化

Fig.1   Lattice constants of β-Ti1-xNbx alloys plotted as functions of composition (For comparison, experimental measurements[44~46] are plotted by black squares; SQS—special quasirandom structure, CPA—coherent potential approximation; x—atomic fraction of Nb)


2.2 形成焓

形成焓(ΔHf)计算公式如下:

ΔHf=ETi1-xNbx-1-xETi+xENb

式中,ETi1-xNbx是无序Ti1-xNbx合金每个原子的总能,ETiENb分别是单质Ti和单质Nb在bcc结构下每个原子的总能。

计算得到的形成焓与Nb原子含量的关系如图2所示。由图可见,无原子弛豫的VASP-SQS及EMTO-CPA计算得到的形成焓大于0。EMTO-CPA计算得到的形成焓随Nb含量增加呈近似抛物线型,但最高值点偏离x=0.5,说明合金偏离理想固溶体。除高Nb端外,无弛豫VASP-SQS形成焓低于EMTO-CPA,且并不呈现抛物线型。在考虑原子的局域结构弛豫情况下,VASP-SQS计算得到的形成焓降低。其中,低Nb含量(x<30%)时,形成焓降低极为显著。这是由于bcc结构的β-Ti在低温下为非稳定相,低Nb含量不足以稳定β相。本课题组前期的计算结果[29]表明,稳定β相所需的最低Nb含量约为30%。对于非稳β相,原子弛豫效应受到2种因素的影响,其一是合金原子与基体原子尺寸差距,即,常规的原子尺寸效应;其二是合金的结构不稳定性,经过原子弛豫,原子显著偏离bcc结构格点位置,形成更稳定的非β相结构。本工作后续原子弛豫的定量表征将会说明这一点。

图2

图2   β-Ti1-xNbx合金的形成焓随Nb含量的变化

Fig.2   Formation enthalpy of β-Ti1-xNbx alloys plotted as functions of composition


本课题组前期计算的fcc结构Ti-Al和Cu-Au无序合金的形成焓结果[47,48]表明,当合金原子与基体原子的尺寸差距较小时,VASP-SQS与EMTO-CPA计算得到的结果差别很小。本工作中,Ti及Nb原子的原子尺寸相当接近,但二者得到的形成焓仍然有较大差距。这可能和SQS中合金原子分布的具体构型有关。事实上,在一定的关联函数截断下,存在较多SQS结构满足关联函数要求,但它们的形成焓一般并不相同。原则上,应当计算多个这样的SQS对应的形成焓,并进行平均,以获得可靠的形成焓值。这需要大量的超晶胞计算,计算量巨大。本工作对每一成分仅采用了一个SQS晶胞计算形成焓。因此,本工作中EMTO-CPA形成焓计算结果更为可靠。

2.3 自由能及相分解

合金的Gibbs自由能(ΔG)可用如下公式表达:

ΔGT=ΔHf-TΔS+ΔFvib(T)

式中,ΔS为无序Ti1-xNbx合金的混合熵,ΔFvib为晶格振动自由能,T为温度。ΔS表达式为:

ΔS=-kB[xlnx+1-xln 1-x]

式中,kB为Boltzmann常数。对于稳定结构合金,晶格振动对自由能的贡献一般远小于混合熵ΔS的贡献[49],因此,本工作忽略ΔFvib。如2.2节分析,EMTO-CPA计算得到形成焓ΔHf更为可靠,因此,本节自由能计算采用EMTO-CPA计算得到的ΔHf

β-Ti1-xNbx合金的ΔGxT的变化如图3a所示。由图可见,在低温下(小于200 K),ΔG为正值,意味着在低温下,bcc-Ti与bcc-Nb不能互溶。随温度升高,ΔG降低并开始出现负值。当温度高于400 K时,整个成分区间内ΔG均为负值,即,bcc-Ti与bcc-Nb互溶。此外,温度在300~600 K左右时,自由能随成分的变化出现了2个极小值,意味着合金中存在相分解。温度在700 K以上时,β-Ti1-xNbx为均匀合金。由图3a的自由能曲线中的极值点及拐点,确定了β-Ti1-xNbx的相图,如图3b所示。图中,实线为由自由能极小值确定的溶解度极限,虚线为由自由能曲线拐点确定的调幅分解溶解度极限。由图3b可见,在630 K以下时,合金存在较宽的溶解度间隙,成分在此区间内的Ti-Nb合金出现相分解。成分在红线范围内时,合金发生调幅分解;成分在红线与黑线之间时,合金以形核长大方式发生分解。

图3

图3   不同温度下β-Ti1-xNbx合金的Gibbs自由能(ΔG)随Nb含量的变化及相图

Fig.3   Gibbs free energy (ΔG) (a) and phase diagram (b) of β-Ti1-xNbx alloys as functions of compos-ition and temperature


实验上从Ti-24Nb-4Zr-8Sn合金中发现了调幅分解[50,51],由Nb原子含量15.1%的母相中分解出富Nb (约20%)和贫Nb (约8%)的纳米级相,子相与母相有着完全相同的晶格结构。计算得到的调幅分解区Nb含量较高,未在Nb含量15.1%时出现调幅分解,其原因可能是没有考虑Zr原子和Sn原子的贡献。

2.4 弹性性质

2.4.1 单晶弹性常数

图4给出了采用VASP-SQS和EMTO-CPA方法计算的无序TiNb合金的弹性常数随Nb含量的变化。无弛豫VASP-SQS与EMTO-CPA计算得到的弹性常数随Nb含量的变化趋势一致:随Nb含量增加,C11C12增加,C44降低。其中,无弛豫VASP-SQS计算得到的C11C44均低于EMTO-CPA计算值,而VASP-SQS C12高于EMTO-CPA C12。VASP-SQS C44在高Nb端、EMTO-CPA C12在低Nb端出现幅度极小的非单调变化,可能是计算误差引起的。

图4

图4   β-Ti1-xNbx合金的弹性常数随Nb含量的变化

Color online

Fig.4   Single crystal elastic constants C11 (a), C12 (b) and C44 (c) of β-Ti1-xNbx alloys as functions of composition (The blue scattered symbols are from experimental measurements[52~54])


比较有、无原子弛豫的VASP-SQS计算得到的弹性常数可以发现,在x>30%时,原子弛豫对C11影响不大,但C12降低,C44增加。各弹性常数分量随x的变化趋势不变。在x<30%时,原子弛豫对各弹性常数的影响极为显著,出现非单调的变化趋势。与形成焓计算类似,这种原子弛豫引起的非单调弹性常数变化,也是由合金晶格显著偏离bcc结构引起的。

图4中还显示了实验测量的室温下单晶TiNb合金的弹性常数,Nb含量分别为25.6%、30.0%和40.0%[52~54]。Reid等[52]和Hermann等[53]的实验结果与SQS的计算结果非常接近,Jeong等[54]的实验结果与未考虑局域晶格畸变的SQS计算结果更是几乎完全吻合。

2.4.2 Young's模量与剪切模量

图5给出了无原子弛豫VASP-SQS计算得到的Ti30Nb24、Ti24Nb30和Ti18Nb36的剪切模量(图5a~c)和Young's模量(图5d~f)随晶体取向的变化。临近Ti/Nb原子比为1的Ti30Nb24的Young's模量在<100>方向出现最小值,Ti24Nb30的Young's模量在<111>方向出现最小值。在这2个Nb含量之间,Young's模量的最小值从<100>方向转移到<111>方向。之后,随着Nb含量的增加,Young's模量在<111>方向的最小值也会减小。剪切模量的极大值随Nb含量的变化与Young's模量正好相反,此外,<110>方向总有极小值出现。

图5

图5   Ti30Nb24、Ti24Nb30和Ti18Nb36剪切模量和Young's模量随晶体取向的变化

Color online

Fig.5   Shear moduli (a~c) and Young's moduli (d~f) of Ti30Nb24 (a, d), Ti24Nb30 (b, e) and Ti18Nb36 (c, f) as a function of crystal orientation from unrelaxed SQS calculations (The Zener ratio A=2C44/(C11-C12) is a measure of the elastic anisotropy)


2.4.3 弹性稳定性

Born稳定性原则[55]可以用来判定材料的机械稳定性。对于立方结构的TiNb合金,Born稳定性判据可表达为C11-C12>0、C11+2C12>0和C44>0。由图4可知Cij总是正值,C11+2C12>0和C44>0总是满足的。图6显示了C11-C12的值随Nb含量的变化。整体上无序TiNb合金的弹性稳定性都随Nb含量的增加而增强。无原子弛豫的VASP-SQS结果表明,当Nb含量高于约11.9%时,β-Ti1-xNbx合金满足弹性稳定性判据。EMTO-CPA过高预测了β-Ti1-xNbx合金的弹性稳定性,即使在纯Ti时仍满足Born判据,显然与实验结果不符。VASP-SQS的弹性稳定性在有原子弛豫的条件下总是高于无原子弛豫的结果。在Nb含量较少时出现明显的非单调变化,这种非单调的变化同样是由bcc结构的不稳定引起的,不能用来判断bcc结构β-Ti1-xNbx合金的弹性稳定性。

图6

图6   β-Ti1-xNbx合金的机械稳定性随Nb含量的变化

Fig. 6   Mechanical stability criteria of β-Ti1-xNbx alloys as functions of composition


2.5 局域晶格畸变

由2.2及2.4节可以看到,β-Ti1-xNbx合金在低Nb含量时,考虑局域晶格畸变的VASP-SQS计算得到的形成焓及弹性常数均出现非单调变化趋势。认为这与低Nb含量时,合金bcc结构不稳定性导致弛豫后原子显著偏离bcc格点位置有关。为准确描述局域晶格畸变,把局域晶格畸变(Δd)定义为:

    Δd=1Ni(xi-xi')2+(yi-yi')2+(zi-zi')2    

式中,N是晶胞中的总原子数,(xi, yi, zi)和(xi', yi', zi')分别是笛卡尔坐标系中有原子弛豫和无原子弛豫时的原子位置。

当Ti原子与Nb原子互相掺杂时,由于原子尺寸以及电子结构的不同,经过原子弛豫后局域晶格会发生畸变,相应的能量也会随之改变,本工作将弛豫前后晶格畸变引起的能量差定义为畸变能。图7给出了局域晶格畸变及其畸变能随成分的变化。由图可见,当TiNb合金的Nb含量在30%以上时,局域晶格畸变较小(小于约0.002 nm),引起的畸变能也较小(小于约15 meV/atom)。但当Nb含量少于30%时,晶格畸变及畸变能显著增加,最大分别可达约0.005 nm及75 meV/atom。在高Nb含量时,β-Ti1-xNbx合金的bcc结构是稳定的,晶格畸变仅来自Ti及Nb的原子大小的差异。在低Nb含量时,β-Ti-Nb合金的bcc结构不稳定,SQS超晶胞中合金原子的准无序分布破坏了晶格对称性,在进行VASP-SQS原子弛豫计算时,原子显著偏离bcc格点位置。因此,在低Nb含量时,晶格畸变不仅有Ti、Nb原子差异的贡献,也有晶格不稳定性的贡献,使得晶格畸变显著增加。这说明VASP-SQS并不适合描述非稳相中的局域结构畸变。

图7

图7   β-Ti1-xNbx合金的局域晶格畸变(Δd)和畸变能(ΔE)随Nb含量的变化

Fig.7   Local lattice distortion (Δd) and distortion energy (ΔE) of β-Ti1-xNbxalloys as functions of composition (Results are obtained from relaxed and unrelax SQS calculations)


图7中的局域晶格畸变可知,要使β-Ti1-xNbx合金的bcc结构稳定,最低Nb含量约为30%。2.4节中弹性稳定性分析表明,满足弹性稳定性最低Nb含量约为12%。可见,弹性稳定性与结构稳定对Nb含量的要求并不相同,满足弹性稳定性并不一定满足结构稳定性。

3 结论

(1) VASP-SQS及EMTO-CPA计算得到的无序β-Ti1-xNbx合金的晶格常数符合良好,均随Nb含量增加而增加,局域晶格弛豫对晶格常数的影响可以忽略。

(2) 当温度低于200 K时,bcc-Ti与bcc-Nb不能互溶;当温度高于400 K时,bcc-Ti与bcc-Nb在整个成分区间内互溶;EMTO-CPA的结果表明在630 K以下,β-Ti1-xNbx合金出现相分解。

(3) 随Nb含量增加,EMTO-CPA及无弛豫VASP-SQS计算得到的弹性常数C11C12增大,C44减小,弹性稳定性增强,但EMTO-CPA高估了合金的弹性稳定性。

(4) 随Nb含量的增加,Young's模量的最小值从<100>方向转移到<111>方向,剪切模量则相反。

(5) 当Nb含量低于约30%时,β-Ti1-xNbx的bcc结构不稳定,VASP-SQS计算得到的局域晶格畸变显著增加,使得考虑原子弛豫的合金自由能及弹性常数随Nb含量的变化偏离正常趋势。

参考文献

Brunette D M, Tengvall P, Textor M, et al.

Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications

[M]. Berlin: Springer, 2001: 703

[本文引用: 1]

Woodman J L, Jacobs J J, Galante J O, et al.

Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study

[J]. J. Orthop. Res., 1984, 1: 421

DOI      URL     PMID      [本文引用: 1]

Forty-five baboons that had received titanium-based fiber metal composite segmental bone replacements were studied along with 13 controls without implants. Thirty-eight baboons with implants were sacrificed, and titanium, aluminum, and vanadium levels were assayed in homogenized lung, kidney, spleen, liver, adjacent muscle, and regional lymph nodes. In seven living baboons with implants, blood and urine samples were obtained for trace metal analysis as well as for biochemical and hematological profiles. In the 38 sacrificed baboons with implants, increased titanium levels were noted in the lungs, spleen, adjacent muscle (quadriceps, soleus, and triceps), and regional lymph nodes (inguinal, axillary, and popliteal) in comparison to those of six sacrificed controls without implants. In addition, vanadium was significantly elevated in the lungs of some animals, while aluminum increases were noted in adjacent muscle (quadriceps, soleus, and triceps), lung, and regional lymph nodes (inguinal, axillary, and popliteal). In the seven living baboons with implants, a sixfold increase (p less than 0.0005) in the urine titanium level was noted in comparison to that of seven living controls without implants. Additionally, elevated aluminum levels were found in the serum (p less than 0.0005) of the group with implants. Biochemical and hematological studies did not indicate statistically significant differences in serum electrolytes, in liver and renal function tests, or in complete blood counts between the seven living baboons with implants and their controls.

Mohammadi S, Wictorin L, Ericson L E, et al.

Cast titanium as implant material

[J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435

DOI      URL     [本文引用: 1]

Semlitsch M F, Weber H, Streicher R M, et al.

Joint replacement components made of hot-forged and surface-treated Ti-6A1-7Nb alloy

[J]. Biomaterials, 1992, 13: 781

DOI      URL     PMID      [本文引用: 1]

We have developed a titanium-aluminium alloy with the inert alloying element niobium. The optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy designed for implants shows the same alpha/beta structure as Ti-6Al-4V and exhibits equally good mechanical properties. The corrosion resistance of Ti-6Al-7Nb in sodium chloride solution is equivalent to that of pure titanium and Ti-6Al-4V. This is due to a very dense and stable passive layer. Highly stressed anchorage stems of different hip prosthesis designs have been made from hot-forged Ti-6Al-7Nb. The polished surfaces of hip, knee and wrist joints made of Ti-6Al-7Nb and articulating against polyethylene are surface-treated by means of a very hard and 3-5 microns thick titanium nitride coating (Tribosul-TiN) or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns.

Bordji K, Jouzeau J Y, Mainard D, et al.

Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts

[J]. Biomaterials, 1996, 17: 929

DOI      URL     PMID      [本文引用: 1]

Titanium alloys are well known for their superior mechanical properties as well as for their good biocompatibility, making them desirable as surgical implant materials. However, these alloys have been proven to behave poorly in friction since wear particles were often detected in tissues and organs associated with titanium implants. In this paper, three surface treatments were investigated in order to improve the wear resistance and the hardness of Ti-6Al-4V and Ti-5Al-2.5Fe: (a) glow discharge nitrogen implantation (10(17) atoms cm-2), (b) plasma nitriding by plasma diffusion treatment (PDT) and (c) deposition of TiN layer by plasma-assisted chemical vapour deposition (PACVD) additionally to PDT. Surface characterization after the different treatments showed considerable improvement in surface hardness, especially after the two nitriding processes. Moreover, the good corrosion resistance of untreated alloys was maintained. A cell culture model using human cells was chosen to study the effect of such treatments on the cytocompatibility of these materials. The results showed that Ti-5Al-2.5Fe alloy was as cytocompatible as the Ti-6Al-4V alloy and the same surface treatment led to identical biological consequences on both alloys. Nitrogen implantation did not modify at all the cellular behaviour observed on untreated samples. After the two nitriding treatments, cell proliferation and viability appeared to be significantly reduced and the scanning electron microscopy study revealed somewhat irregular surface states. However, osteoblast phenotype expression and protein synthesis capacity were not affected. PDT and PACVD may be interesting alternatives to the physical vapour deposition technique.

Yumoto S, Ohashi H, Nagai H, et al.

Aluminum neurotoxicity in the rat brain

[J]. Int. J. PIXE, 1992, 2: 493

DOI      URL     [本文引用: 1]

Rao S, Ushida T, Tateishi T, et al.

Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells

[J]. Biomed. Mater. Eng., 1996, 6: 79

URL     PMID     

The effect of Ti, V and Al ions on the relative growth rate of L929 cells and MC3T3-E1 cells was investigated by a cell culture method with metallic powders. These powders were sterilized under a U.V. lamp for 6 h, suspended in the medium and extracted for 48 h, 72 h and 96 h in the incubator. After filtering with a 0.2 microns filter, 3.0 x 10(4) L929 cells and 5 x 10(4) MC3T3-E1 cells were seeded in these filtrates of the medium with and without (control) the presence of the metallic powder. The number of cells was counted using a coulter counter from 1 to 7 days. The number of L929 cells after 4 days of incubation was almost similar for Ti and the control, whereas in the case of A1 and V extraction the number of cells was too low as compared to that of the control. The relative growth rate of L929 cells for Ti, A1 and V after 4 days of incubation was about 1, 0.2 and 0.02, respectively. A similar trend was also observed for MC3T3-E1 cells. The effect of the relative growth rate of L929 cells at different extraction times of 48 h, 72 h and 96 h was examined. It was found that the relative growth rate of L929 cells for Ti, A1 and V extraction was almost the same at all three extraction times. A number of 2.0-5.0 x 10(4) cells was seeded in the medium of A1 extraction. The effect of this initial number of cells on the relative growth rate of L929 cells was investigated. The relative growth rate of L929 cells decreased as the initial number of L929 cells increased. Moreover, dilutions from 1 to 10 times in the case of A1 and from 1 to 4000 times in the case of V were made. The relative growth rate became equal to 1 at 5 times dilution for A1 and at 4000 times dilution for V, for both L929 and MC3T3-E1 cells. From the measures of the concentration of the released A1 and V ions on the relative growth rate of L929 cells, it could be seen that there was a marked decrease in the concentrations of A1 and V ions from 0.3 ppm to 0.1 ppm.

Walker P R, LeBlanc J, Sikorska M.

Effects of aluminum and other cations on the structure of brain and liver chromatin

[J]. Biochemistry, 1989, 28: 3911

DOI      URL     PMID     

The reactivity of aluminum and several other divalent and trivalent metallic cations toward chromatin from rat brain and liver has been investigated. Two criteria are used to determine the relative reactivity of these cations toward chromatin. The first involves the ability of the ions to compact the chromatin fibers to the point where chromatin precipitates. The second criterion measures the ability of cations to interfere with the accessibility of exogenous structural probes (nucleases) to chromatin. Of the divalent cations tested, nickel, cobalt, zinc, cadmium, and mercury were the most reactive toward chromatin, on the basis of their ability to induce precipitation of chromatin in the micromolar concentration range. The divalent cations magnesium, calcium, copper, strontium, and barium were much less effective, although all cations precipitate chromatin if their concentration is increased. Of the trivalent cations tested, aluminum, indium, and gallium were very effective precipitants, whereas iron and scandium were without effect at the concentrations tested. Of all the cations tested, aluminum was the most reactive. Aluminum's ability to alter the structure of chromatin was investigated further by testing its ability to interfere with nuclease accessibility. This test confirmed that aluminum does induce considerable changes in chromatin structure at micromolar concentrations. Furthermore, chromatin from cortical areas of the brain was much more sensitive to aluminum than chromatin from liver. These results are discussed in light of the known toxicity of these cations, with particular emphasis on the possible role of aluminum in Alzheimer's disease.

Sarkar B. Biological Aspects of Metals and Metal-Related Diseases [M]. New York: Raven Press, 1983: 209

[本文引用: 1]

Sumner D R, Galante J O.

Determinants of stress shielding: Design versus materials versus interface

[J]. Clin. Orthop. Relat. Res., 1992, 274: 202

[本文引用: 1]

Engh C A, Bobyn J D.

The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty

[J]. Clin. Orthop. Relat. Res., 1988, 231: 7

Wang K.

The use of titanium for medical applications in the USA

[J]. Mater. Sci. Eng., 1996, A213: 134

Huiskes R, Weinans H, Van Rietbergen B.

The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials

[J]. Clin. Orthop. Relat. Res., 1992, 274: 124

Khan M A, Williams R L, Williams D M.

In-vitro corrosion and wear of titanium alloys in the biological environment

[J]. Biomaterials, 1996, 17: 2117

DOI      URL     PMID      [本文引用: 1]

Cyclic anodic polarization studies were undertaken for several titanium alloys of varying composition and phase structures. All materials were exposed to an accelerated corrosion test using a potentiostat and their electrochemical behaviour was analysed within a potential range of 0 to 5000 mV. The electrolyte used was a phosphate buffered saline (PBS) solution at pH = 5, 7.4 and 9. The polarization curves obtained represented both the passive and active regions of the materials and these curves were used to compare the resistance to pitting corrosion of each material. The sliding-wear of these materials was studied in both non-corrosive and corrosive environments. A simple pin-on-disc type wear apparatus was designed and built to simulate the co-joint action of corrosion and sliding-wear. Using this apparatus, it was also possible to evaluate the effect of wear-accelerated corrosion, which was also evaluated by wearing the surface of the specimens prior to corrosion. It was evident that the mixed phase alpha-beta alloys (Ti-6AI-4V and Ti-6AI-7Nb) possessed the best combination of both corrosion and wear resistance, although commercially pure titanium and the near-beta (Ti-13Nb-13Zr) and beta (Ti-15Mo) alloys displayed the best corrosion resistant properties.

Kuroda D, Niinomi M, Morinaga M, et al.

Design and mechanical properties of new β type titanium alloys for implant materials

[J]. Mater. Sci. Eng., 1998, A243: 244

[本文引用: 1]

Tane M, Akita S, Nakano T, et al.

Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals

[J]. Acta Mater., 2008, 56: 2586

[本文引用: 1]

Zhang M H, Yu Z T, Zhou L, et al.

Biocompatibility evaluation of β-type titanium alloys

[J]. Rare Met. Mater. Eng., 2007, 36: 1815

[本文引用: 1]

(张明华, 于振涛, 周 廉.

β型钛合金材料的生物相容性评价

[J]. 稀有金属材料与工程, 2007, 36: 1815)

[本文引用: 1]

Song Y, Xu D S, Yang R, et al.

Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys

[J]. Mater. Sci. Eng., 1999, A260: 269.

[本文引用: 1]

Sun J, Yao Q, Xing H, et al.

Elastic properties of β, α'' and ω metastable phases in Ti-Nb alloy from first-principles

[J]. J. Phys. Condens. Matter, 2007, 19: 486215

DOI      URL     [本文引用: 1]

Ikehata H, Nagasako N, Furuta T, et al.

First-principles calculations for development of low elastic modulus Ti alloys

[J]. Phys. Rev., 2004, 70B: 174113

[本文引用: 1]

Gutiérrez Moreno J J, Papageorgiou D G, Evangelakis G A, et al.

An abinitio study of the structural and mechanical alterations of Ti-Nb alloys

[J]. J. Appl. Phys., 2018, 124: 245102

DOI      URL     [本文引用: 1]

Gutiérrez Moreno J J, Bonisch M, Panagiotopoulos N T, et al.

Ab-initio and experimental study of phase stability of Ti-Nb alloys

[J]. J. Alloys Compd., 2017, 696: 481

DOI      URL     [本文引用: 1]

Dai J H, Song Y, Li W, et al.

Influence of alloying elements Nb, Zr, Sn, and oxygen on structural stability and elastic properties of the Ti2448 alloy

[J]. Phys. Rev., 2014, 89B: 014103

[本文引用: 1]

Zhou W C, Sahara R, Tsuchiya K.

First-principles study of the phase stability and elastic properties of Ti-X alloys (X=Mo, Nb, Al, Sn, Zr, Fe, Co, and O)

[J]. J. Alloys Compd., 2017, 727: 579

DOI      URL     [本文引用: 1]

Zunger A, Wei S H, Ferreira L G, et al.

Special quasirandom structures

[J]. Phys. Rev. Lett., 1990, 65: 353

URL     PMID      [本文引用: 1]

Wei S H, Ferreira L G, Bernard J E, alel.

Electronic properties of random alloys: Special quasirandom structures

[J]. Phys. Rev., 1990, 42B: 9622

[本文引用: 1]

Soven P.

Coherent-potential model of substitutional disordered alloys

[J]. Phys. Rev., 1967, 156: 809

DOI      URL     [本文引用: 1]

Gyorffy B L.

Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys

[J]. Phys. Rev., 1972, 5B: 2382

[本文引用: 1]

Zhang S Z, Cui H, Li M M, et al.

First-principles study of phase stability and elastic properties of binary Ti-xTM (TM=V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys

[J]. Mater. Des., 2016, 110: 80

DOI      URL     [本文引用: 2]

Hu Q M, Li S J, Hao Y L, et al.

Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations

[J]. Appl. Phys. Lett., 2008, 93: 121902

DOI      URL    

Zhao Y F, Fu Y C, Hu Q M, et al.

First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1-xVxand Ti1-xNbx alloys

[J]. Acta Metall. Sin., 2009, 45: 1042

URL     [本文引用: 1]

α(α'), ω, and β phases of binary Ti-V(Nb) alloys are investigated by the use of first-principles exact Muffin-Tin orbital method in combination with coherent potential approximation. It is shown that, with the increase in the V content, the lattice parameter aα of the α(α') phase decreases, whereas cα/aα slightly increases; aω and cω/aω of the ω phase and aβ of the $\beta$ phase decrease. For Ti-Nb alloy, with increasing Nb content, aα keeps almost unchanged whereas cα/aα increases; aω increases and cω/aω deceases; aβ does not change significantly. The lattice parameter misfit between the ω and β phases increases with increasing V or Nb content. Both V and Nb harden the bulk modulus of Ti and improve the phase stability of the β phase relative to the α(α') and ω phases. The theoretical predictions are compared in detail with the available experimental data.]]>

(赵宇飞, 符跃春, 胡青苗.

Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究

[J]. 金属学报, 2009, 45: 1042)

URL     [本文引用: 1]

1-xVx与Ti1-xNbx合金中α(α'), ω及β相的晶格常数、体模量及相稳定性随成分的变化. 结果表明, Ti-V合金中随着V含量的增加, α(α')相晶格参数aα$减小, cα/aα略有增加, ω相晶格参数aω及cω/aω同时减小, β相晶格参数aβ减小; Ti-Nb合金中随Nb含量的增加, aα几乎不变, cα/aα增加, aω增加, cω/aω减小, aβ几乎不变. 随V及Nb含量的增加, ω与β相的晶格错配度线性增加. V和Nb均能提高三相的体模量, 且增加 β相对于其它两相的稳定性.]]>

Vitos L.

Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications

[M]. London: Springer, 2007: 247

[本文引用: 1]

Perdew J P, Burke K, Ernzerhof M.

Generalized gradient approximation made simple

[J]. Phys. Rev. Lett., 1996, 77: 3865

DOI      URL     PMID      [本文引用: 1]

Girifalco L A, Weizer V G.

Application of the Morse potential function to cubic metals

[J]. Phys. Rev., 1959, 114: 687

DOI      URL     [本文引用: 1]

Kresse G, Hafner J.

Ab initio molecular dynamics for liquid metals

[J]. Phys. Rev., 1993, 47B: 558

[本文引用: 1]

Kresse G, Furthmüller J.

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set

[J]. Phys. Rev., 1996, 54B: 11169

Kresse G, Furthmüller J.

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

[J]. Comput. Mater. Sci., 1996, 6: 15

DOI      URL     [本文引用: 1]

Blöchl P E.

Projector augmented-wave method

[J]. Phys. Rev., 1994, 50B: 17953

[本文引用: 1]

Van de Walle A, Tiwary P, De Jong M, et al.

Efficient stochastic generation of special quasirandom structures

[J]. Calphad, 2013, 42: 13

DOI      URL     [本文引用: 1]

We present a new algorithm to generate Special Quasirandom Structures (SQS), i.e., best periodic supercell approximations to the true disordered state for a given number of atoms per supercell. The method is based on a Monte Carlo simulated annealing loop with an objective function that seeks to perfectly match the maximum number of correlation functions (as opposed to merely minimizing the distance between the SQS correlation and the disordered state correlations for a pre-specified set of correlations). The proposed method optimizes the shape of the supercell jointly with the occupation of the atomic sites, thus ensuring that the configurational space searched is exhaustive and not biased by a pre-specified supercell shape. The method has been implemented in the "mcsqs" code of the Alloy Theoretic Automated Toolkit (ATAT) in the most general framework of multicomponent multisublattice systems and in a way that minimizes the amount of input information the user needs to specify and that allows for efficient parallelization. (C) 2013 Elsevier Ltd.

Birch F.

Finite elastic strain of cubic crystals

[J]. Phys. Rev., 1947, 71: 809

DOI      URL     [本文引用: 1]

Von Pezold J, Dick A, Friák M, et al.

Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti

[J]. Phys. Rev., 2010, 81: 094203

DOI      URL     [本文引用: 1]

Tasnádi F, Odén M, Abrikosov I A.

Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence

[J]. Phys. Rev., 2012, 85B: 144112

Holec D, Tasnádi F, Wagner P, et al.

Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions

[J]. Phys. Rev., 2014, 90B: 184106

[本文引用: 1]

Hariharan Y, Janawadkar M P, Radhakrishnan T S, et al.

Structure property correlations in superconducting Ti-Nb alloys

[J]. Pramana, 1986, 26: 513

DOI      URL     [本文引用: 2]

Kim H Y, Ikehara Y, Kim J I, et al.

Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys

[J]. Acta Mater., 2006, 54: 2419

DOI      URL    

AbstractShape memory and superelastic properties associated with the martensitic transformation from β to α″ martensite were investigated in Ti–(15–35) at.% Nb alloys. The transformation strain and transformation temperature linearly decreased with increasing Nb content. The low critical stress for slip deformation resulted in only a small superelastic strain in solution-treated Ti–Nb binary alloys. Fine and dense ω precipitates formed during aging in the temperature range between 573 and 673 K were effective in increasing the critical stress for slip deformation in a Ti–26 at.% Nb alloy. An intermediate-temperature annealing at 873 K for 600 s without solution treatment was also effective in increasing the critical stress for slip deformation due to the fine subgrain structure. The higher critical stress for slip deformation resulted in a larger recovery strain and stable superelasticity. Excellent superelasticity was achieved by annealing at 873 K for 600 s followed by aging at 573 K due to the combined effect of work hardening and age hardening.]]>

Dobromyslov A V, Elkin V A.

Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods

[J]. Scr. Mater., 2001, 44: 905

DOI      URL     [本文引用: 2]

Tian L Y, Hu Q M, Yang R, et al.

Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti-Al

[J]. J. Phys. Condens. Matter, 2015, 27: 315702

DOI      URL     PMID      [本文引用: 1]

Tian L Y, Ye L H, Hu Q M, et al.

CPA descriptions of random Cu-Au alloys in comparison with SQS approach

[J]. Comput. Mater. Sci., 2017, 128: 302

DOI      URL     [本文引用: 1]

Ye L H, Wang H, Zhou G, et al.

Phase stability of TiAl-X (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys

[J]. J. Alloys Compd., 2020, 819: 153291

DOI      URL     [本文引用: 1]

Hao Y L, Wang H L, Li T, et al.

Superelasticity and tunable thermal expansion across a wide temperature range

[J]. J. Mater. Sci. Technol., 2016, 32: 705

DOI      URL     [本文引用: 1]

Wang H L, Hao Y L, He S Y, et al.

Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy

[J]. Acta Mater., 2017, 135: 330

[本文引用: 1]

Reid C N, Routbort J L, Maynard R A.

Elastic constants of Ti-40at.% Nb at 298 °K

[J]. J. Appl. Phys., 1973, 44: 1398

[本文引用: 3]

Hermann R, Hermann H, Calin M, et al.

Elastic constants of single crystalline β-Ti70Nb30

[J]. Scr. Mater., 2012, 66: 198

[本文引用: 1]

Jeong H W, Yoo Y S, Lee Y T, et al.

Elastic softening behavior of Ti-Nb single crystal near martensitic transformation temperature

[J]. J. Appl. Phys., 2010, 108: 063515

[本文引用: 3]

Born M.

On the stability of crystal lattices. I

[J]. Math. Proc. Cambridge Philos. Soc., 1940, 36: 160

[本文引用: 1]

/