Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1423-1432    DOI: 10.11900/0412.1961.2020.00086
  本期目录 | 过刊浏览 |
Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响
武华健1, 程仁山1, 李景仁1, 谢东升1, 宋锴2, 潘虎成1(), 秦高梧1
1 东北大学材料学院材料各向异性与织构教育部重点实验室 沈阳 110819
2 中国核动力研究设计院 成都 610213
Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy
WU Huajian1, CHENG Renshan1, LI Jingren1, XIE Dongsheng1, SONG Kai2, PAN Hucheng1(), QIN Gaowu1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
Huajian WU, Renshan CHENG, Jingren LI, Dongsheng XIE, Kai SONG, Hucheng PAN, Gaowu QIN. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. Acta Metall Sin, 2020, 56(10): 1423-1432.

全文: PDF(3084 KB)   HTML
摘要: 

系统研究了Al含量对铸态和挤压态Mg-2.5Sn-2Ca-xAl (x=2、4、9,质量分数,%)合金微观组织和力学性能的影响。结果表明,随着Al含量的升高,合金的强度有所降低,延伸率增加。Mg-2.5Sn-2Ca-2Al、Mg-2.5Sn-2Ca-4Al和Mg-2.5Sn-2Ca-9Al合金的屈服强度分别约为370、325和290 MPa,延伸率分别约为6.2%、11.0%和12.0%。第四组元Al元素的加入改变了Mg-Sn-Ca合金中纳米尺寸第二相的类型和含量。Mg-2.5Sn-2Ca-2Al和Mg-2.5Sn-2Ca-9Al合金中分别形成高密度的G.P.区和Mg17Al12第二相,Mg-2.5Sn-2Ca-4Al合金中未见明显的纳米相析出。高密度的G.P.区阻碍再结晶晶粒长大的效率较Mg17Al12纳米相更为显著,因此Mg-2.5Sn-2Ca-2Al合金的再结晶晶粒更为细小(约0.5 μm)。同时TEM观察表明,Mg-2.5Sn-2Ca-2Al合金的晶粒内部还存在较高密度的位错,且这些位错一般与G.P.区伴生,因而合金内部还保留有较高密度的亚晶片层组织(片层厚度0.2~1.0 μm)。大量G.P.区以及残余位错的存在会成为新产生位错运动的障碍,这些均会对Mg-2.5Sn-2Ca-2Al合金高的屈服强度做出贡献,但同时也会损伤合金材料的塑性。在Mg-2.5Sn-2Ca-9Al合金中,由于高含量Al元素的存在以及Mg17Al12纳米相阻碍位错运动能力相对较弱,导致残余位错密度更低,所以Mg-2.5Sn-2Ca-9Al合金表现出了更大的晶粒尺寸、较低的屈服强度以及更高的塑性。

关键词 镁合金晶粒细化第二相动态再结晶强度    
Abstract

There is considerable demand for high-performance, low-cost, and rare-earth-free magnesium alloys in several industrial applications because of their energy conservation potential. However, the mechanical properties of the currently available rare-earth-free magnesium alloys cannot satisfy the industrial requirements. Therefore, a novel rare-earth-free magnesium alloy with high strength, excellent ductility, and good formability must be urgently developed. In this study, the microstructure and mechanical properties of the Mg-2.5Sn-2Ca-xAl (x=2, 4, and 9, mass fraction, %) alloys in the as-cast and extruded states when different amounts of Al content are added are systematically studied. As indicated by the results, the strength and elongation of the alloy decrease and increase, respectively, with the increasing Al content. The yield strengths of the Mg-2.5Sn-2Ca-2Al, Mg-2.5Sn-2Ca-4Al, and Mg-2.5Sn-2Ca-9Al alloys are approximately 370, 325, and 290 MPa, respectively, and their elongations are approximately 6.2%, 11.0%, and 12.0%, respectively. The type and content of the nanosecond phase of the Mg-Sn-Ca-based alloy changed because of the addition of the fourth type of Al element. High-density G.P. zones and a second phase of Mg17Al12 can be observed in the extruded Mg-2.5Sn-2Ca-2Al and Mg-2.5Sn-2Ca-9Al alloys, respectively; however, nanophase precipitation cannot be observed in case of the extruded Mg-2.5Sn-2Ca-4Al alloy. The high-density G.P. zones hinder the growth of the recrystallized grains more efficiently than the Mg17Al12 nanophase; thus, the recrystallized grains of the extruded Mg-2.5Sn-2Ca-2Al alloys are finer (approximately 0.5 μm) than the extruded Mg-2.5Sn-2Ca-9Al alloy. Based on TEM images, high-density dislocations can be observed inside the extruded Mg-2.5Sn-2Ca-2Al alloy grains and G.P. zones can be observed toward the side of the dislocations; thus, the high density subgrain lamella structure is retained in the alloy (lamella thickness: 0.2~1.0 μm). The movement of the newly generated dislocations is inhibited by the large number of G.P. zones and residual dislocations, increasing the yield strength and decreasing the plasticity of the Mg-2.5Sn-2Ca-2Al alloy. The Mg17Al12 nanophase that was formed in the Mg-2.5Sn-2Ca-9Al alloy because of the addition of high Al content exhibits a weak ability to hinder the movement of the dislocations, resulting in low-density residual dislocation. Therefore, the Mg-2.5Sn-2Ca-9Al alloy, exhibits a large grain size, low yield strength and high plasticity.

Key wordsMg alloy    grain refinement    second phase    dynamic recrystallization    strength
收稿日期: 2020-03-19     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目(51525101);国家自然科学基金项目(U1610253);国家自然科学基金项目(51971053);中央高校基本科研业务费项目(N2002011);中国科协青年人才托举工程项目(2019-2021QNRC001);中国科协青年人才托举工程项目(2019-2021QNRC002);辽英才计划项目(XLYC1808038);辽宁省-沈阳材料科学国家研究中心联合基金项目(2019JH3/30100040)
作者简介: 武华健,男,1995年生,硕士生
AlloySnCaAlMg
Mg-2.5Sn-2Ca-2Al2.321.832.05Bal.
Mg-2.5Sn-2Ca-4Al2.481.954.25Bal.
Mg-2.5Sn-2Ca-9Al2.592.128.63Bal.
表1  Mg-2.5Sn-2Ca-xAl合金的实际成分 (mass fraction / %)
图1  挤压态Mg-2.5Sn-2Ca-xAl合金的拉伸应力-应变曲线
Alloy

σs

MPa

σb

MPa

δ

%

Mg-2.5Sn-2Ca-2Al3704006.2
Mg-2.5Sn-2Ca-4Al32534011.0
Mg-2.5Sn-2Ca-9Al29035412.0
表2  Mg-2.5Sn-2Ca-xAl合金的力学性能
图2  铸态Mg-2.5Sn-2Ca-xAl合金显微组织的OM像和SEM像
PositionMgSnCaAlAl/(Sn+Ca)Phase
170.2910.1012.017.520.34MgSnCa
275.680.067.6716.562.14Al2Ca
377.2911.1010.051.540.07MgSnCa
474.750.096.9118.202.60Al2Ca
575.0111.3910.712.880.13MgSnCa
671.770.116.9121.263.03Al2Ca
表3  图2中1~6处的EDS结果 (atomic fraction / %)
图3  铸态Mg-2.5Sn-2Ca-xAl合金的XRD谱
图4  挤压态Mg-2.5Sn-2Ca-xAl合金的OM像、(0002)极图和TEM像
图5  挤压态Mg-2.5Sn-2Ca-xAl合金的SEM像
PositionMgSnCaAlAl/(Sn+Ca)Phase
190.463.643.931.980.26MgSnCa
251.520.0915.3433.052.14Al2Ca
387.655.525.281.550.14MgSnCa
460.770.099.5929.553.05Al2Ca
556.4721.1318.753.650.09MgSnCa
649.310.0212.1238.553.18Al2Ca
表4  图5中1~6处的EDS结果 (atomic fraction / %)
图6  挤压态Mg-2.5Sn-2Ca-xAl合金微观组织的TEM像
图7  挤压态Mg-2.5Sn-2Ca-2Al合金中包括高密度的G.P.区以及残余位错的TEM像
[1] Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnesium Alloys, 2019, 7: 717
doi: 10.1016/j.jma.2019.09.006
[2] Chai Y F, Song Y, Jiang B, et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets [J]. J. Magnesium Alloys, 2019, 7: 545
doi: 10.1016/j.jma.2019.09.007
[3] Liu L Z, Chen X H, Pan F S, et al. A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy [J]. J. Alloys Compd., 2016, 688: 537
doi: 10.1016/j.jallcom.2016.07.144
[4] Peng P, She J, Tang A T, et al. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy [J]. Mater. Sci. Eng., 2019, A764: 138144
[5] Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
[6] Liu W C, Zhou B P, Wu G H, et al. High temperature mechanical behavior of low-pressure sand-cast Mg-Gd-Y-Zr magnesium alloy [J]. J. Magnesium Alloys, 2019, 7: 597
doi: 10.1016/j.jma.2019.07.006
[7] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion [J]. Scr. Mater., 2009, 61: 644
doi: 10.1016/j.scriptamat.2009.06.003
[8] Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy [J]. Mater. Sci. Eng., 2010, A528: 323
[9] Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
doi: 10.1016/j.matdes.2015.06.032
[10] Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
doi: 10.1016/j.actamat.2018.03.002
[11] Kim D H, Lee J Y, Lim H K, et al. The Effect of microstructure evolution on the elevated temperature mechanical properties in Mg-Sn-Ca system [J]. Mater. Trans., 2008, 49: 2405
doi: 10.2320/matertrans.MER2008140
[12] Zhong L P, Wang Y J, Dou Y C. On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion [J]. J. Magnesium Alloys, 2019, 7: 637
doi: 10.1016/j.jma.2019.07.007
[13] Nayyeri G, Mahmudi R. Effects of Ca additions on the microstructural stability and mechanical properties of Mg-5%Sn alloy [J]. Mater. Des., 2011, 32: 1571
doi: 10.1016/j.matdes.2010.09.019
[14] Chai Y F, Jiang B, Song J F, et al. Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet [J]. Mater. Sci. Eng., 2019, A746: 82
[15] Elamami H A, Incesu A, Korgiopoulos K, et al. Phase selection and mechanical properties of permanent-mold cast Mg-Al-Ca-Mn alloys and the role of Ca/Al ratio [J]. J. Alloys Compd., 2018, 764: 216
doi: 10.1016/j.jallcom.2018.05.309
[16] Li Z T, Qiao X G, Xu C, et al. Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents [J]. J. Alloys Compd., 2019, 792: 130
doi: 10.1016/j.jallcom.2019.03.319
[17] Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
[18] Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
doi: 10.1016/j.scriptamat.2010.06.028
[19] Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
[20] Huang Q Y, Liu Y, Zhang A Y, et al. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38: 39
doi: 10.1016/j.jmst.2019.06.025
[21] Bai J, Sun Y S, Xue F, et al. Effect of Al contents on microstructures, tensile and creep properties of Mg-Al-Sr-Ca alloy [J]. J. Alloys Compd., 2007, 437: 247
doi: 10.1016/j.jallcom.2006.07.096
[22] She J, Peng P, Xiao L, et al. Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying [J]. Mater. Sci. Eng., 2019, A765: 138203
[23] Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
doi: 10.1016/j.scriptamat.2019.01.013
[24] Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
doi: 10.1016/j.actamat.2017.03.046
[25] Xie H B, Pan H C, Ren Y P, et al. Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure [J]. Cryst. Growth Des., 2018, 18: 5866
doi: 10.1021/acs.cgd.8b00542
[26] Guo K X, Ye H Q, Wu Y K. Application of Electron Diffraction Pattern in Crystallography [M]. Beijing: Science Press, 1983: 233
[26] (郭可信, 叶恒强, 吴玉琨. 电子衍射图在晶体学中的应用 [M]. 北京: 科学出版社, 1983: 233)
[27] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science [M]. Boston, MA: Springer, 1996: 1
[28] Peng W D, Xiao X W, Pan H C, et al. Effects of Ce, Sr alloying on second phases of Mg-Sn-Ca alloy in cast and homogenized states [J]. Hot Work. Technol., 2018, 47(5): 73
[28] (彭卫丹, 肖新蔚, 潘虎成等. Ce、Sr合金化对铸态及均匀化态Mg-Sn-Ca合金第二相的影响 [J]. 热加工工艺, 2018, 47(5): 73)
[29] Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
[30] Kozlov A, Ohno M, Arroyave R, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg-Sn-Ca system [J]. Intermetallics, 2008, 16: 299
doi: 10.1016/j.intermet.2007.10.010
[31] Kozlov A, Ohno M, Leil T A, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 2: Prediction of phase formation in Mg-rich Mg-Sn-Ca cast alloys [J]. Intermetallics, 2008, 16: 316
doi: 10.1016/j.intermet.2007.10.011
[32] Suzuki A, Saddock N D, Jones J W, et al. Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys [J]. Acta Mater., 2005, 53: 2823
doi: 10.1016/j.actamat.2005.03.001
[33] Suzuki A, Saddock N D, Jones J W, et al. Structure and transition of eutectic (Mg, Al)2Ca Laves phase in a die-cast Mg-Al-Ca base alloy [J]. Scr. Mater., 2004, 51: 1005
doi: 10.1016/j.scriptamat.2004.07.011
[34] Máthis K, Trojanová Z, Lukáč P, et al. Modeling of hardening and softening processes in Mg alloys [J]. J. Alloys Compd., 2004, 378: 176
doi: 10.1016/j.jallcom.2003.10.098
[35] Huang H, Liu H, Wang C, et al. Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy [J]. J. Magnesium Alloys, 2019, 7: 617
doi: 10.1016/j.jma.2019.04.008
[36] Duchaussoy A, Sauvage X, Edalati K, et al. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles [J]. Acta Mater., 2019, 167: 89
doi: 10.1016/j.actamat.2019.01.027
[37] Yuan W, Panigrahi S K, Su J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scr. Mater., 2011, 65: 994
doi: 10.1016/j.scriptamat.2011.08.028
[38] Liu L Z, Chen X H, Pan F S, et al. Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg-Zn-Zr-Ce alloys [J]. Mater. Sci. Eng., 2016, A669: 259
[39] Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5 pmid: 31406235
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[15] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.