|
|
Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响 |
武华健1, 程仁山1, 李景仁1, 谢东升1, 宋锴2, 潘虎成1( ), 秦高梧1 |
1 东北大学材料学院材料各向异性与织构教育部重点实验室 沈阳 110819 2 中国核动力研究设计院 成都 610213 |
|
Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy |
WU Huajian1, CHENG Renshan1, LI Jingren1, XIE Dongsheng1, SONG Kai2, PAN Hucheng1( ), QIN Gaowu1 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Nuclear Power Institute of China, Chengdu 610213, China |
引用本文:
武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
Huajian WU,
Renshan CHENG,
Jingren LI,
Dongsheng XIE,
Kai SONG,
Hucheng PAN,
Gaowu QIN.
Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. Acta Metall Sin, 2020, 56(10): 1423-1432.
[1] |
Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnesium Alloys, 2019, 7: 717
doi: 10.1016/j.jma.2019.09.006
|
[2] |
Chai Y F, Song Y, Jiang B, et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets [J]. J. Magnesium Alloys, 2019, 7: 545
doi: 10.1016/j.jma.2019.09.007
|
[3] |
Liu L Z, Chen X H, Pan F S, et al. A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy [J]. J. Alloys Compd., 2016, 688: 537
doi: 10.1016/j.jallcom.2016.07.144
|
[4] |
Peng P, She J, Tang A T, et al. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy [J]. Mater. Sci. Eng., 2019, A764: 138144
|
[5] |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
[6] |
Liu W C, Zhou B P, Wu G H, et al. High temperature mechanical behavior of low-pressure sand-cast Mg-Gd-Y-Zr magnesium alloy [J]. J. Magnesium Alloys, 2019, 7: 597
doi: 10.1016/j.jma.2019.07.006
|
[7] |
Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion [J]. Scr. Mater., 2009, 61: 644
doi: 10.1016/j.scriptamat.2009.06.003
|
[8] |
Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy [J]. Mater. Sci. Eng., 2010, A528: 323
|
[9] |
Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
doi: 10.1016/j.matdes.2015.06.032
|
[10] |
Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
doi: 10.1016/j.actamat.2018.03.002
|
[11] |
Kim D H, Lee J Y, Lim H K, et al. The Effect of microstructure evolution on the elevated temperature mechanical properties in Mg-Sn-Ca system [J]. Mater. Trans., 2008, 49: 2405
doi: 10.2320/matertrans.MER2008140
|
[12] |
Zhong L P, Wang Y J, Dou Y C. On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion [J]. J. Magnesium Alloys, 2019, 7: 637
doi: 10.1016/j.jma.2019.07.007
|
[13] |
Nayyeri G, Mahmudi R. Effects of Ca additions on the microstructural stability and mechanical properties of Mg-5%Sn alloy [J]. Mater. Des., 2011, 32: 1571
doi: 10.1016/j.matdes.2010.09.019
|
[14] |
Chai Y F, Jiang B, Song J F, et al. Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet [J]. Mater. Sci. Eng., 2019, A746: 82
|
[15] |
Elamami H A, Incesu A, Korgiopoulos K, et al. Phase selection and mechanical properties of permanent-mold cast Mg-Al-Ca-Mn alloys and the role of Ca/Al ratio [J]. J. Alloys Compd., 2018, 764: 216
doi: 10.1016/j.jallcom.2018.05.309
|
[16] |
Li Z T, Qiao X G, Xu C, et al. Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents [J]. J. Alloys Compd., 2019, 792: 130
doi: 10.1016/j.jallcom.2019.03.319
|
[17] |
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
|
[18] |
Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
doi: 10.1016/j.scriptamat.2010.06.028
|
[19] |
Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
|
[20] |
Huang Q Y, Liu Y, Zhang A Y, et al. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38: 39
doi: 10.1016/j.jmst.2019.06.025
|
[21] |
Bai J, Sun Y S, Xue F, et al. Effect of Al contents on microstructures, tensile and creep properties of Mg-Al-Sr-Ca alloy [J]. J. Alloys Compd., 2007, 437: 247
doi: 10.1016/j.jallcom.2006.07.096
|
[22] |
She J, Peng P, Xiao L, et al. Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying [J]. Mater. Sci. Eng., 2019, A765: 138203
|
[23] |
Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
doi: 10.1016/j.scriptamat.2019.01.013
|
[24] |
Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
doi: 10.1016/j.actamat.2017.03.046
|
[25] |
Xie H B, Pan H C, Ren Y P, et al. Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure [J]. Cryst. Growth Des., 2018, 18: 5866
doi: 10.1021/acs.cgd.8b00542
|
[26] |
Guo K X, Ye H Q, Wu Y K. Application of Electron Diffraction Pattern in Crystallography [M]. Beijing: Science Press, 1983: 233
|
[26] |
(郭可信, 叶恒强, 吴玉琨. 电子衍射图在晶体学中的应用 [M]. 北京: 科学出版社, 1983: 233)
|
[27] |
Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science [M]. Boston, MA: Springer, 1996: 1
|
[28] |
Peng W D, Xiao X W, Pan H C, et al. Effects of Ce, Sr alloying on second phases of Mg-Sn-Ca alloy in cast and homogenized states [J]. Hot Work. Technol., 2018, 47(5): 73
|
[28] |
(彭卫丹, 肖新蔚, 潘虎成等. Ce、Sr合金化对铸态及均匀化态Mg-Sn-Ca合金第二相的影响 [J]. 热加工工艺, 2018, 47(5): 73)
|
[29] |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
[30] |
Kozlov A, Ohno M, Arroyave R, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg-Sn-Ca system [J]. Intermetallics, 2008, 16: 299
doi: 10.1016/j.intermet.2007.10.010
|
[31] |
Kozlov A, Ohno M, Leil T A, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 2: Prediction of phase formation in Mg-rich Mg-Sn-Ca cast alloys [J]. Intermetallics, 2008, 16: 316
doi: 10.1016/j.intermet.2007.10.011
|
[32] |
Suzuki A, Saddock N D, Jones J W, et al. Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys [J]. Acta Mater., 2005, 53: 2823
doi: 10.1016/j.actamat.2005.03.001
|
[33] |
Suzuki A, Saddock N D, Jones J W, et al. Structure and transition of eutectic (Mg, Al)2Ca Laves phase in a die-cast Mg-Al-Ca base alloy [J]. Scr. Mater., 2004, 51: 1005
doi: 10.1016/j.scriptamat.2004.07.011
|
[34] |
Máthis K, Trojanová Z, Lukáč P, et al. Modeling of hardening and softening processes in Mg alloys [J]. J. Alloys Compd., 2004, 378: 176
doi: 10.1016/j.jallcom.2003.10.098
|
[35] |
Huang H, Liu H, Wang C, et al. Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy [J]. J. Magnesium Alloys, 2019, 7: 617
doi: 10.1016/j.jma.2019.04.008
|
[36] |
Duchaussoy A, Sauvage X, Edalati K, et al. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles [J]. Acta Mater., 2019, 167: 89
doi: 10.1016/j.actamat.2019.01.027
|
[37] |
Yuan W, Panigrahi S K, Su J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scr. Mater., 2011, 65: 994
doi: 10.1016/j.scriptamat.2011.08.028
|
[38] |
Liu L Z, Chen X H, Pan F S, et al. Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg-Zn-Zr-Ce alloys [J]. Mater. Sci. Eng., 2016, A669: 259
|
[39] |
Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5
pmid: 31406235
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|