Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1411-1422    DOI: 10.11900/0412.1961.2020.00081
  本期目录 | 过刊浏览 |
白斑缺陷对GH4586合金组织和力学性能的影响
谭海兵1, 黄烁2(), 王静1, 李姝1, 朱昌洪1, 钟燕1, 钟世林1, 何爱杰1
1 中国航发四川燃气涡轮研究院 成都 610500
2 钢铁研究总院高温材料研究所 北京 100081
Influence of White Spot Defects on Microstructure and Mechanical Property of the GH4586 Alloy
TAN Haibing1, HUANG Shuo2(), WANG Jing1, LI Shu1, ZHU Changhong1, ZHONG Yan1, ZHONG Shilin1, HE Aijie1
1 Sichuan Gas Turbine Establishment, Aero Engine Corporation of China, Chengdu 610500, China
2 High Temperature Materials Research Division, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

谭海兵, 黄烁, 王静, 李姝, 朱昌洪, 钟燕, 钟世林, 何爱杰. 白斑缺陷对GH4586合金组织和力学性能的影响[J]. 金属学报, 2020, 56(10): 1411-1422.
Haibing TAN, Shuo HUANG, Jing WANG, Shu LI, Changhong ZHU, Yan ZHONG, Shilin ZHONG, Aijie HE. Influence of White Spot Defects on Microstructure and Mechanical Property of the GH4586 Alloy[J]. Acta Metall Sin, 2020, 56(10): 1411-1422.

全文: PDF(4289 KB)   HTML
摘要: 

系统分析了GH4586合金白斑缺陷的组织特征、元素分布及其对室温拉伸性能和硬度的影响,结合热力学计算和感应锭凝固过程仿真模拟,探讨了白斑缺陷的形成机制及其控制方法。结果表明,GH4586合金盘锻件中的白斑缺陷为枝晶白斑,宏观上表现为枝晶花样,微观组织是由MC型碳化物、M6C型碳化物和大尺寸非共格γ′相组成的第二相团簇。由于枝晶白斑中含有较多的高硬度、易开裂的第二相团簇,使合金的室温抗拉强度和塑性显著降低,对GH4586合金盘锻件的力学性能影响较大。GH4586合金大尺寸真空感应锭凝固过程中会产生较大内应力和形成较多缩孔,直接用做电极进行自耗重熔时,易因缩孔开裂而发生电极掉块,落入熔池后形成白斑缺陷。提升自耗电极的质量和优化真空自耗工艺能有效控制GH4586合金盘锻件中的白斑缺陷。

关键词 镍基变形高温合金GH4586合金白斑缺陷组织力学性能    
Abstract

GH4586 is a nickel-based wrought superalloy developed by China, and features high Ti, W, Mo and low Al. However, it is easy to form whit spot (WP) defects within the disk components manufactured from the GH4586 ingot with a diameter of 508 mm produced by double vacuum melting method. In present work, the macro- and micro-structural characteristics, as well as the element distribution of WP defect were systematically studied. Special attention was focused on the effects of WP on mechanical properties. Hardness, tensile properties and fracture morphology of normal and defective areas were investigated for comparison. In addition, the formation mechanism and control method of WP defects were investigated based on the thermodynamic calculation and solidification simulation, respectively. In order to analyze its dendritic segregation and second phase precipitation in the solidification process, solidification phase diagram and thermodynamic equilibrium phase diagram of GH4586 alloy were calculated with JmatPro software. To study the forming mechanism of WP, the solidification process of vacuum introduction melting (VIM) GH4586 ingots was simulated with Procast software. Results show that the WP defects within GH4586 components are dendritic WP which exhibits dendritic pattern on the macro level. While on micro level, it is the precipitate clusters which consisted of MC carbides, M6C carbides and large incoherent γ′ phase. Due to the clusters' inherent rigid and fragile characteristics, the tensile strength and ductility of the alloy are significantly reduced. Therefore, the WP defects are harmful to the mechanical properties of the GH4586 disk significantly. The WP defects must be avoided during the forging process. Since excessive internal stress and shrinkage cavities form during the solidification process of large VIM GH4586 ingots, chips fall into molten pool easily if the VIM ingots are employed as vacuum arc remelting (VAR) electrode, and then give birth to WP defects within the final forging components. Therefore, it is the effective method for avoiding WP defects by improving the quality of VAR electrode and optimizing the VAR process.

Key wordsnickel-based wrought superalloy    GH4586 alloy    white spot defect    structure    mechanical property
收稿日期: 2020-03-13     
ZTFLH:  TG146.1  
基金资助:国家科技重大专项项目(2017-VI-0015-0087);国家科技重大专项项目(2017-VI-0018-0090)
作者简介: 谭海兵,男,1986年生,工程师,硕士
AlloyCCrCoTiAlWMoNbFeNi
GH45860.0619.011.03.201.63.08.0--Bal.
GH41410.0615.011.03.101.5-9.5--Bal.
GH41690.0319.0-0.950.5-3.05.2Bal.52.5
GH47380.0319.513.53.101.4-4.3--Bal.
表1  典型盘锻件用变形高温合金的名义成分 (mass fraction / %)
图1  GH4586合金盘锻件上白斑缺陷的典型宏观形貌
图2  GH4586合金盘锻件中白斑缺陷的OM和SEM像
图3  对应图2a区域白斑缺陷的EPMA元素面扫描分布图
图4  对应图2c区域白斑缺陷的EPMA元素面扫描分布图
图5  对应图2d框线位置的白斑缺陷中第二相团簇的TEM像和SAED花样
PositionCAlTiCrCoNiMoW
P10.30±0.179.29±2.4214.39±3.102.24±0.485.59±1.2167.62±14.600.44±0.110.14±0.03
P27.72±0.951.31±0.305.25±0.9023.20±3.9610.25±1.7522.61±3.8623.29±4.276.37±0.97
P347.49±5.940.26±0.0642.24±7.700.53±0.100.15±0.030.44±0.087.01±1.361.88±0.31
表2  图5a中P1、P2和P3位置的EDS分析结果 (atomic fraction / %)

Area

Hardness / HVσb / MPaσ0.2 / MPaδ / %ψ / %
Aver.Stand. deviationAver.Stand. deviationAver.Stand. deviationAver.Stand. deviationAver.Stand. deviation
Normal44615.52148738.21110718.8118.53.8816.03.00
Defect52916.3111797.4110881.730.50.282.00.57
表3  白斑缺陷区域与正常区域的Vikers硬度和室温拉伸性能
图6  白斑缺陷拉伸试样断口形貌及纵剖面近断口处形貌
图7  GH4586合金凝固相图、热力学平衡相图和凝固过程液相中元素含量计算结果
PhaseMethodNiAlCoCrMoTiWC
MCSPD---0.200.3752.250.6246.56
σSPD23.470.0511.4639.1325.49-0.39-
ηSPD66.371.918.760.27-22.70--
MCTPD---0.350.3348.702.6747.95
σTPD16.520.0018.9554.899.51-0.13-
γTPD71.9510.233.151.800.0912.390.40-
M6CTPD26.60-2.8420.1932.89-3.1914.29
M23C6TPD3.02-1.2864.9610.000.000.04-
PTPD27.34-7.7430.7625.01-9.15-
μTPD23.82-21.1420.5329.54-4.97
表4  基于Jmatpro软件计算得到的GH4586合金凝固相图和热力学平衡相图中各相的化学组成 (atomic fraction / %)
图8  GH4586合金感应锭试样的EPMA元素面扫描分布图
图9  GH4586合金真空感应锭凝固过程的数值模拟结果
图10  GH4586合金真空感应锭中缩孔典型形貌SEM像
[1] Zhang B J, Zhao G P, Jiao L Y, et al. Influence of hot working process on microstructures of superalloy GH4586 [J]. Acta Metall. Sin., 2005, 41: 351
[1] (张北江, 赵光普, 焦兰英等. 热加工工艺对GH4586合金微观组织的影响 [J]. 金属学报, 2005, 41: 351)
[2] Wang L, Wang S, Song X, et al. Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy [J]. Int. J. Fatigue, 2014, 62: 210
doi: 10.1016/j.ijfatigue.2013.10.006
[3] Wang S, Wang L, Liu Y, et al. Effect of long-term aging on the fatigue crack growth rate of a nickel-based superalloy [J]. Mater. Sci. Eng., 2011, A528: 2110
[4] Fecht H, Furrer D. Processing of nickel-base superalloys for turbine engine disc applications [J]. Adv. Eng. Mater., 2000, 2: 777
doi: 10.1002/(ISSN)1527-2648
[5] Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
[5] (杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115)
doi: 10.11900/0412.1961.2019.00142
[6] Xu G H, Jiao L Y, Zhang B J, et al. Effect of cooling rate after solid solution on microstructure and tensile properties of GH4586 superalloy at 850 ℃ [J]. Trans. Mater. Heat Treat., 2006, 27: 47
[6] (胥国华, 焦兰英, 张北江等. 固溶冷却速度对GH4586合金组织及850 ℃拉伸性能的影响 [J]. 材料热处理学报, 2006, 27: 47)
[7] Zhong Z Y, Zhuang J Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15(7): 1
[7] (仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15(7): 1)
[8] Liu Q M, Huang S Z, Chen Y L, et al. Investigation on the abnormal corrosion spots of GH4169G alloy parts [J]. Gas Turb. Exp. Res., 2019, 32: 52
[8] (刘巧沐, 黄顺洲, 陈玉龙等. GH4169G合金零件异常腐蚀区缺陷分析 [J]. 燃气涡轮试验与研究, 2019, 32: 52)
[9] Reed R C. The Superalloys Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 222
[10] Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale, PA: TMS, 1994: 153
[11] Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
doi: 10.11900/0412.1961.2019.00078
[11] (张北江, 黄 烁, 张文云等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095)
doi: 10.11900/0412.1961.2019.00078
[12] Huang Q Y, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 186
[12] (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 186)
[13] Scarfo J P, Wolski K, Gros V, et al. Powerplant group chairman's factual report [R]. Washington: National Transportation Safety Board, 2017
[14] Damkroger B K, Kelley J B, Schlienger M E, et al. The influence of VAR processes and parameters on white spot formation in alloy 718 [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale, PA: TMS, 1994: 125
[15] Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
[16] Li L H, Dong J X, Zhang M C, et al. Integrated simulation of the forging process for GH4738 alloy turbine disk and its application [J]. Acta Metall. Sin., 2014, 50: 821
doi: 10.3724/SP.J.1037.2013.00675
[16] (李林翰, 董建新, 张麦仓等. GH4738合金涡轮盘锻造过程的集成式模拟及应用 [J]. 金属学报, 2014, 50: 821)
doi: 10.3724/SP.J.1037.2013.00675
[17] Samuelsson E, Domingue J A, Maurer G E. Characterizing solute-lean defects in superalloys [J]. JOM, 1990, 42(8): 27
[18] Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
[18] (王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
[19] Dong J X, Li A, Zhang M C. Thermodynamic simulation of precipitations in GH586 superalloy [J]. J. Mater. Eng., 2003, (9): 7
[19] (董建新, 李 昂, 张麦仓. GH586高温合金析出相的热力学模拟计算 [J]. 材料工程, 2003, (9): 7)
[20] Zhuang J Y, Du J H, Deng Q, et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 19
[20] (庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 19)
[21] Jones R M F, Jackman L A. The structural evolution of superalloy ingots during hot working [J]. JOM, 1999, 51(1): 27
[22] Moyer J M, Jackman L A, Adasczik C B, et al. Advances in triple melting superalloys 718, 706, and 720 [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale, PA: TMS, 1994: 39
[23] Dong J X, Li L H, Li R Y, et al. Effect of extent of homogenization on the hot deformation recrystallization of superalloy ingot in cogging process [J]. Acta Metall. Sin., 2015, 51: 1207
doi: 10.11900/0412.1961.2015.00419
[23] (董建新, 李林翰, 李浩宇等. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响 [J]. 金属学报, 2015, 51: 1207)
doi: 10.11900/0412.1961.2015.00419
[24] Xie S S, Yang H C, Wang Z X, et al. Effects of grain-boundary carbides on high-temperature strength in the superalloy GH586 [J]. J. Northeast. Univ. (Nat. Sci.), 1998, 19: 577
[24] (谢世殊, 杨洪才, 王志兴等. GH586合金的晶界碳化物高温强化 [J]. 东北大学学报(自然科学版), 1998, 19: 577)
[25] Van Den Avyle J A, Brooks J A, Powell A C. Reducing defects in remelting processes for high-performance alloys [J]. JOM, 1998, 50(3): 22
[26] Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
doi: 10.11900/0412.1961.2015.00368
[26] (张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227)
doi: 10.11900/0412.1961.2015.00368
[27] Crozet C, Devaux A, Forestier R, et al. Effect of ingot size on microstructure and properties of the new advanced AD730TM superalloy [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale, PA: TMS, 2016: 437
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[12] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[13] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.