|
|
变形参数对2195 Al-Li合金动态再结晶的影响 |
李旭1,杨庆波1,樊祥泽1,呙永林2,林林2,张志清1,3( ) |
1. 重庆大学材料科学与工程学院 重庆 400044 2. 西南铝业(集团)有限责任公司 重庆 401326 3. 重庆西彭产业工业园区 重庆 401326 |
|
Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy |
Xu LI1,Qingbo YANG1,Xiangze FAN1,Yonglin GUO2,Lin LIN2,Zhiqing ZHANG1,3( ) |
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2. Southwest Aluminum Group Co. , Ltd. , Chongqing 401326, China 3. Chongqing Xipeng Industrial Park, Chongqing 401326, China |
引用本文:
李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
Xu LI,
Qingbo YANG,
Xiangze FAN,
Yonglin GUO,
Lin LIN,
Zhiqing ZHANG.
Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. Acta Metall Sin, 2019, 55(6): 709-719.
[1] | Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862 | [2] | Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337 | [2] | (郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337) | [3] | Jiang N, Li J F, Zheng Z Q, et al. Simulation on flow stress of multi-pass hot deformation of 2195 Al-Li alloy [J]. Rare Met. Mater. Eng., 2007, 36: 949 | [3] | (蒋 呐, 李劲风, 郑子樵等. 2195铝锂合金多道次热变形流变应力的模拟研究 [J]. 稀有金属材料与工程, 2007, 36: 949) | [4] | Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775 | [5] | Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy [J]. J. Alloys Compd., 2017, 723: 548 | [6] | Zhu R H, Liu Q, Li J F, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression [J]. J. Alloys Compd., 2015, 650: 75 | [7] | Han D F, Zheng Z Q, Jiang N, et al. Flow stress of high-strength weldable 2195 aluminium-lithium alloy during hot compression deformation [J]. Chin. J. Nonferrous Met., 2004, 14: 2090 | [7] | (韩冬峰, 郑子樵, 蒋 呐等. 高强可焊2195铝-锂合金热压缩变形的流变应力 [J]. 中国有色金属学报, 2004, 14: 2090) | [8] | Shen B, Deng L, Wang X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation [J]. Mater. Sci. Eng., 2015, A625: 288 | [9] | Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A: 1255 | [10] | Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology [J]. Forg. Stamp. Technol., 2008, 33(2): 75 | [10] | (潘红波, 唐 荻, 胡水平等. 平面应变压缩技术的研究 [J]. 锻压技术, 2008, 33(2): 75) | [11] | Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300 | [12] | Li H Y, Ou L, Zheng Z Q. Study on the anisotropy of 2195 Al-Li alloy [J]. J. Mater. Eng., 2005, (10): 31 | [12] | (李红英, 欧 玲, 郑子樵. 2195铝锂合金的各向异性研究 [J]. 材料工程, 2005, (10): 31) | [13] | Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Mater. Sci. Eng., 1998, A257: 100 | [14] | Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130 | [15] | Sun Z C, Zheng L S, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation [J]. Mater. Charact., 2014, 90: 71 | [16] | Yang Q B, Wang X Z, Li X, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression [J]. Mater. Charact., 2017, 131: 500 | [17] | Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204 | [18] | Yang X S, Chai L J, Huang W J, et al. EBSD analysis on restoration mechanism of as-extruded AA2099 Al-Li alloy after various thermomechanical processes [J]. Mater. Chem. Phys., 2017, 191: 99 | [19] | Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J]. Chin. J. Nonferrous Met., 2016, 26: 365 | [19] | (杨胜利, 沈 健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制 [J]. 中国有色金属学报, 2016, 26: 365) | [20] | Chen X H, Chen K H, Dong P X, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation [J]. Chin. J. Nonferrous Met., 2013, 23: 44 | [20] | (陈学海, 陈康华, 董朋轩等. 7085铝合金的热变形组织演变及动态再结晶模型 [J]. 中国有色金属学报, 2013, 23: 44) | [21] | Xiang S, Liu D Y, Zhu R H, et al. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3855 | [22] | Yin H, Li H Y, Su X J, et al. Processing maps and microstructural evolution of isothermal compressed Al-Cu-Li alloy [J]. Mater. Sci. Eng., 2013, A586: 115 | [23] | Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548 | [24] | Kumar S, Pink E. Serrated flow in aluminium alloys containing lithium [J]. Acta Mater., 1997, 45: 5295 | [25] | Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ Int., 2007, 43: 684 | [26] | Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748 | [27] | Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22 | [28] | Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136 | [29] | Li X, Fan X Z, Yang Q B, et al. Flow behavior and microstructure of 2195 Al-Li alloy during plane strain compression [J]. Chin. J. Nonferrous Met., 2018, 28: 1980 | [29] | (李 旭, 樊祥泽, 杨庆波等. 2195铝锂合金平面应变压缩的流变行为与微观组织 [J]. 中国有色金属学报, 2018, 28: 1980) | [30] | Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510 | [30] | (刘 娟, 李居强, 崔振山等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510) | [31] | Murty S V S N, Sarkar A, Narayanan P R, et al. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219 [J]. Mater. Sci. Eng., 2016, A677: 41 | [32] | Kapoor R, Shekhawat S K, Samajdar I. Flow localization in an Al-2.5Mg alloy after severe plastic deformation [J]. Mater. Sci. Eng., 2014, A611: 114 | [33] | Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium [J]. Mater. Sci. Eng., 2000, A283: 274 | [34] | Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng., 2005, A410-411: 152 | [35] | Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng., 1996, A205: 23 | [36] | Henshall G A, Kassner M E, McQueen H J. Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime [J]. Metall. Trans., 1992, 23A: 881 | [37] | Kassner M E. Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept [J]. Metall. Trans., 1989, 20A: 2182 | [38] | Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218 | [39] | McQueen H J. Development of dynamic recrystallization theory [J]. Mater. Sci. Eng., 2004, A387-389: 203 | [40] | Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685 | [41] | Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: II—Annealing behaviour [J]. Acta Mater., 2004, 52: 3251 | [42] | Liu W Y, Zhao H, Li D, et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature [J]. Mater. Sci. Eng., 2015, A596: 176 | [43] | Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, A542: 79 | [44] | Yan J, Pan Q L, Li B, et al. Research on the hot deformation behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy using processing map [J]. J. Alloys Compd., 2015, 632: 549 | [45] | Mao B P, Yan X D, Shen J. Precipitation behavior of T1 phase during thermo-mechanical treatment of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 2366 | [45] | (毛柏平, 闫晓东, 沈 健. 2197铝锂合金形变热处理中T1相的析出行为 [J]. 中国有色金属学报, 2015, 25: 2366) | [46] | Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|