|
|
碳纳米材料增强镁基复合材料研究进展 |
王晓军, 向烨阳, 胡小石, 吴昆( ) |
哈尔滨工业大学材料科学与工程学院 哈尔滨 150000 |
|
Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials |
Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU( ) |
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150000, China |
引用本文:
王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
Xiaojun WANG,
Yeyang XIANG,
Xiaoshi HU,
Kun WU.
Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials[J]. Acta Metall Sin, 2019, 55(1): 73-86.
[1] | Li W X.Magnesium and Magnesium Alloys [M]. Changsha: Central South University Press, 2005: 1(黎文献. 镁及镁合金 [M]. 长沙: 中南大学出版社, 2005: 1) | [2] | Mordike B L, Ebert T.Magnesium: Properties—applications—potential[J]. Mater. Sci. Eng., 2001, A302: 37 | [3] | Deng K K.Effects of forging processing on microstructures and properties of SiCp/AZ91 magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2008(邓坤坤. 锻造工艺对SiCp/AZ91镁基复合材料组织与性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2008) | [4] | Wang X J.Study on hot deformation behavior of SiC particulate reinforced magnesium matrix composites fabricated by stir casting [D]. Harbin: Harbin Institute of Technology, 2008(王晓军. 搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008) | [5] | Wang L Y.Microstructure and properties of SiC particulate reinforced magnesium matrix composites processed by ultrasonic based stir casting [D]. Harbin: Harbin Institute of Technology, 2012(王丽艳. 超声波辅助搅拌铸造SiCp增强镁基复合材料的组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2012) | [6] | Ding C.Research on microstructure and mechanical properties on diamond/AZ91D magnesium matrix composite [D]. Harbin: Harbin Institute of Technology, 2013(丁超. 金刚石颗粒增强AZ91镁基复合材料组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013) | [7] | Nie K B.Effect of multi-directional forging on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2012(聂凯波. 多向锻造变形纳米SiCp/AZ91镁基复合材料组织与力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012) | [8] | Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56 | [9] | Yakobson B I, Brabec C J, Bernholc J.Nanomechanics of carbon tubes: Instabilities beyond linear response[J]. Phys. Rev. Lett., 1996, 76: 2511 | [10] | Anglaret E, Rols S, Sauvajol J L.Comment on "effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes"[J]. Phys. Rev. Lett., 1998, 81: 4780 | [11] | Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Phys. Rev. Lett., 1999, 82: 944 | [12] | Zhu Y W, Murali S, Stoller M D, et al.Carbon-based supercapacitors produced by activation of grapheme[J]. Science, 2011, 332: 1537 | [13] | Choi W, Lahiri I, Seelaboyina R, et al.Synthesis of graphene and its applications: A review[J]. Crit. Rev. Solid State Mater. Sci., 2010, 35: 52 | [14] | Soldano C, Mahmood A, Dujardin E.Production, properties and potential of graphene[J]. Carbon, 2010, 48: 2127 | [15] | Rashad M, Pan F S, Asif M, et al.Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids[J]. Mater. Sci. Technol., 2015, 31: 1452 | [16] | Rashad M, Pan F S, Asif M, et al.Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. J. Ind. Eng. Chem., 2014, 20: 4250 | [17] | Rashad M, Pan F S, Tang A T, et al.Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111 | [18] | Rashad M, Pan F S, Hu H H, et al.Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2015, A630: 36 | [19] | Rashad M, Pan F S, Tang A T, et al.Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. J. Ind. Eng. Chem., 2015, 23: 243 | [20] | Rashad M, Pan F S, Zhang J Y, et al.Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy[J]. J. Alloys Compd., 2015, 646: 223 | [21] | Rashad M, Pan F S, Asif M.Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2016, A649: 263 | [22] | Rashad M, Pan F S, Lin D, et al.High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets[J]. Mater. Des., 2016, 89: 1242 | [23] | Kondoh K, Fukuda H, Umeda J, et al.Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Mater. Sci. Eng., 2010, A527: 4103 | [24] | Shimizu Y, Miki S, Soga T, et al.Multi-walled carbon nanotube-reinforced magnesium alloy composites[J]. Scr. Mater., 2008, 58: 267 | [25] | Shen J L, Li S N, Yu T Q, et al.Study on the mechanical properties and strengthening mechanism of magnesium matrix composite by powder metallurgy[J]. Foundry Technol., 2005, 26: 309(沈金龙, 李四年, 余天庆等. 粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J]. 铸造技术, 2005, 26: 309) | [26] | Xiang S L, Wang X J, Gupta M, et al.Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Sci. Rep., 2016, 6: 38824 | [27] | Wang M, Zhao Y, Wang L D, et al.Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process[J]. Carbon, 2018, 139: 954 | [28] | Li C D, Wang X J, Wu K, et al.Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites[J]. J. Alloys Compd., 2014, 612: 330 | [29] | Li C D, Wang X J, Liu W Q, et al.Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Mater. Des., 2014, 58: 204 | [30] | Li C D, Wang X J, Liu W Q, et al.Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite[J]. Mater. Sci. Eng., 2014, A597: 264 | [31] | Li C D.Microstructure and properties of CNTs/Mg-6Zn magnesium matrix composites fabricated by the stirring casting assisted with ultrasonic vibration [D]. Harbin: Harbin Institute of Technology, 2014(李成栋. 超声辅助搅拌铸造制备CNTs/Mg-6Zn镁基复合材料及其组织性能 [D]. 哈尔滨: 哈尔滨工业大学, 2014) | [32] | Shi H L, Wang X J, Li C D, et al.A novel method to fabricate CNT/Mg-6Zn composites with high strengthening efficiency[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 909 | [33] | Shi H L.Study on fabrication, interface of MWCNT/Mg-6Zn magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2015(施海龙. 多壁碳纳米管增强镁基复合材料制备及界面研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015) | [34] | Du X, Du W B, Wang Z H, et al.Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A711: 633 | [35] | Gupta M, Lai M O, Soo C Y.Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites[J]. Mater. Sci. Eng., 1996, A210: 114 | [36] | Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future[J]. Mater. Charact., 2015, 105: 30 | [37] | Zhao Y T, Dai Q X, Chen G.Metal Matrix Composite [M]. Beijing: China Machine Press, 2007: 72(赵玉涛, 戴起勋, 陈刚. 金属基复合材料 [M]. 北京: 机械工业出版社, 2007: 72) | [38] | Goh C S, Wei J, Lee L C, et al.Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Mater. Sci. Eng., 2006, A423: 153 | [39] | Xiang S L, Gupta M, Wang X J, et al.Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J]. Composites, 2017, 100A: 183 | [40] | Chen L Y, Konishi H, Fehrenbacher A, et al.Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scr. Mater., 2012, 67: 29 | [41] | Jian X G, Ke L M, Liu F C, et al.Microstructure and mechanical properties of MWCNTs/AZ80 composite fabricated by friction stir processing[J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2013, 27(1): 8(简晓光, 柯黎明, 刘奋成等. 搅拌摩擦加工制备MWCNTs/AZ80复合材料的组织和力学性能[J]. 南昌航空大学学报: 自然科学版, 2013, 27(1): 8) | [42] | Lu D H, Jiang Y H, Zhou R.Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing[J]. Wear, 2013, 305: 286 | [43] | Li S N, Shen J L, Yu T Q, et al.Effect of different plating carbon nanoubes on mechanical properties of magnesium matrix composite[J]. Foundry Technol., 2004, 25: 590(李四年, 沈金龙, 余天庆等. 不同涂层碳纳米管对增强镁基复合材料力学性能的影响[J]. 铸造技术, 2004, 25: 590) | [44] | Wang Y.Technical study on the CNTs reinforced magnesium matrix composite by powder metallurgy [D]. Shenyang: Northeastern University, 2012(王誉. 粉末冶金法制备碳纳米管增强镁基复合材料工艺研究 [D]. 沈阳: 东北大学, 2012) | [45] | Nai M H, Wei J, Gupta M.Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Mater. Des., 2014, 60: 490 | [46] | Zhou X, Song S, Li L, et al.Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes[J]. J. Compos. Mater., 2015, 50: 191 | [47] | Han G Q, Du W B, Ye X X, et al.Compelling mechanical properties of carbon nanotubes reinforced pure magnesium composite by effective interface bonding of Mg2Ni[J]. J. Alloys Compd., 2017, 727: 963 | [48] | Wu Q, Jia C C, Nie J H.The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metall. Technol., 2012, 30: 171(吴琼, 贾成厂, 聂俊辉. 镀W碳纳米管增强Mg基复合材料的力学和电学性能[J]. 粉末冶金技术, 2012, 30: 171) | [49] | Jagannatham M, Sankaran S, Haridoss P.Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites[J]. Mater. Sci. Eng., 2015, A638: 197 | [50] | Maqbool A, Hussain M A, Khalid F A, et al.Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites[J]. Mater. Charact., 2013, 86: 39 | [51] | Hu W, Zhang Z H, Hu Z Y, et al.Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes[J]. Sci. Rep., 2016, 6: 26258 | [52] | Yuan Q H, Zeng X S, Liu Y, et al.Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon, 2016, 96: 843 | [53] | Yuan Q H, Zhou G H, Liao L, et al.Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127: 177 | [54] | Yuan Q H, Qiu Z Q, Zhou G H, et al.Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Mater. Charact., 2018, 138: 215 | [55] | Fukuda H, Kondoh K, Umeda J, et al.Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6 wt.% Al alloy matrix composites reinforced with carbon nanotubes[J]. Compos. Sci. Technol., 2011, 71: 705 | [56] | Chen B, Shen J, Ye X, et al.Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198 | [57] | Xiang S L, Hu X S, Wang X J, et al.Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A724: 348 | [58] | Sanaty-Zadeh A.Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Mater. Sci. Eng., 2012, A531: 112 | [59] | Li Y, Zhao Y H, Ortalan V, et al.Investigation of aluminum-based nanocomposites with ultra-high strength[J]. Mater. Sci. Eng., 2009, A527: 305 | [60] | Ye H Z, Liu X Y.Review of recent studies in magnesium matrix composites[J]. J. Mater. Sci., 2004, 39: 6153 | [61] | Nardone V C, Prewo K M.On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scr. Mater., 1986, 20: 43 | [62] | Mao W M, Zhu J C, Li J, et al.The Structure and Properties of Metallic Materials [M]. Beijing: Tsinghua University Press, 2008(毛卫民, 朱景川, 郦剑等. 金属材料结构与性能 [M]. 北京: 清华大学出版社, 2008) | [63] | Liu Q.Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 46: 1458(刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46: 1458) | [64] | Qi Y P.Study on Mg based amorphous preparation and the toughening of carbon nanotube composites [D]. Tianjing: Hebei University of Technology, 2011(齐云鹏. 镁基块体非晶的制备及其碳纳米管复合材料的增韧研究 [D]. 天津: 河北工业大学, 2011) | [65] | Choi W, Termin A, Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98: 13669 | [66] | Li W X, Hu S M, Hao Y, et al.Hydrogen storage property of Mg-Ni-TiO2-CNTs composites[J]. Int. J. Mod. Phys., 2009, 23B: 1358 | [67] | Cheng H M, Li F, Su G, et al.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett., 1998, 72: 3282 | [68] | Li W X.Study on fabrication and physical properties of CNTs/magnesium matrix composites [D]. Lanzhou: Lanzhou University of Technology, 2009(李维学. 碳纳米管/镁基复合材料的制备与物性研究 [D]. 兰州: 兰州理工大学, 2009) | [69] | Zhou G H.The research of MWCNTs/AZ31 magnesium matrix composites and equal channel angular pressing [D]. Nanchang: Nanchang University, 2010(周国华. 碳纳米管/AZ31镁基复合材料的制备与等径角挤压研究 [D]. 南昌: 南昌大学, 2010) | [70] | Wu J C, Zeng X S, Zhou G H, et al.Study on corrosion resistance of CNTs/Magnesium composite in NaCl solution[J]. Hot Working Technol., 2011, 40: 96(吴集才, 曾效舒, 周国华等. 碳纳米管/镁基复合材料在NaCl溶液中的抗腐蚀性能研究[J]. 热加工工艺, 2011, 40: 96) | [71] | Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 10: 1769 | [72] | Wang X J, Xu D K, Wu R Z, et al.What is going on in magnesium alloys?[J]. J. Mater. Sci. Technol., 2017, 34: 245 | [73] | Wegst U G K, Ashby M F. The mechanical efficiency of natural materials[J]. Philos. Mag., 2004, 84: 2167 | [74] | Zhang Y Y, Li X D.Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Lett., 2017, 17: 6907 | [75] | Zhao M, Xiong D B, Tan Z Q, et al.Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites[J]. Scr. Mater., 2017, 139: 44 | [76] | Yoo S J, Han S H, Kim W J.A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites[J]. Carbon, 2013, 61: 487 | [77] | Cao M, Xiong D B, Tan Z Q, et al.Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117: 65 | [78] | Xiong D B, Cao M, Guo Q, et al.Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite[J]. ACS Nano, 2015, 9: 6934 | [79] | Xiong D B, Cao M, Guo Q, et al.High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability[J]. Sci. Rep., 2016, 6: 33801 | [80] | Zhang L, Chen Z, Wang Y H, et al.Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure[J]. Scr. Mater., 2017, 141: 111 | [81] | Wu H, Fan G H, Huang M, et al.Deformation behavior of brittle/ductile multilayered composites under interface constraint effect[J]. Int. J. Plast., 2017, 89: 96 | [82] | Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697 | [83] | Wu H, Fan G H, Huang M, et al.Fracture behavior and strain evolution of laminated composites[J]. Compos. Struct., 2017, 163: 123 | [84] | Fan G H, Geng L, Wu H, et al.Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study[J]. Scr. Mater., 2017, 135: 63 | [85] | Zhao H W, Yue Y H, Guo L, et al.Cloning nacre's 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties[J]. Adv. Mater., 2016, 28: 5099 | [86] | Deville S, Saiz E, Nalla R K, et al.Freezing as a path to build complex composites[J]. Science, 2006, 311: 515 | [87] | Meng L L, Wang X J, Ning J L, et al.Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness[J]. Carbon, 2018, 130: 222 | [88] | Ding S J, Zhao Y Z, Ge D B.Research progress in electromagnetic shielding materials[J]. Mater. Rev., 2008, 22(4): 30(丁世敬, 赵跃智, 葛德彪. 电磁屏蔽材料研究进展[J]. 材料导报, 2008, 22(4): 30) | [89] | Wang J Z, Xi Z P, Tang H P, et al.Research progress of electromagnetic shielding material of metal fiber[J]. Rare Met. Mater. Eng., 2011, 40: 1688(王建忠, 奚正平, 汤慧萍等. 金属纤维电磁屏蔽材料的研究进展[J]. 稀有金属材料与工程, 2011, 40: 1688) | [90] | Chen X H, Liu J, Zhang Z H, et al.Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy[J]. Mater. Des., 2012, 42: 327 | [91] | Roh J S, Chi Y S, Kang T J, et al.Electromagnetic shielding effectiveness of multifunctional metal composite fabrics[J]. Text Res. J., 2008, 78: 825 | [92] | Wen B, Cao M S, Lu M M, et al.Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater., 2014, 26: 3484 | [93] | Liu Z F, Bai G, Huang Y, et al.Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites[J]. Carbon, 2007, 45: 821 | [94] | Ji K J, Zhao H H, Huang Z G, et al.Performance of open-cell foam of Cu-Ni alloy integrated with graphene as a shield against electromagnetic interference[J]. Mater. Lett., 2014, 122: 244 | [95] | Yan D X, Pang H, Li B, et al.Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Adv. Funct. Mater., 2015, 25: 559 | [96] | Al-Saleh M H, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47: 1738 | [97] | Zhang Z H, Pan F S, Chen X H, et al.Electromagnetic shielding properties of magnesium and magnesium alloys[J]. J. Mater. Eng., 2013, (1): 52(张志华, 潘复生, 陈先华等. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, (1): 52) | [98] | Song K.Study on electromagnetic shielding properties of magnesium alloys [D]. Chongqing: Chongqing University, 2015(宋锴. 镁合金电磁屏蔽性能的研究 [D]. 重庆: 重庆大学, 2015) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|