Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 74-80    DOI: 10.3724/SP.J.1037.2010.00330
  论文 本期目录 | 过刊浏览 |
(Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析
朱庆振1,2), 薛文斌1,2), 鲁亮1), 杜建成1,2), 刘贯军3), 李文芳3)
1) 北京师范大学核科学与技术学院射线束技术与材料改性教育部重点实验室, 北京 100875
2) 北京市辐射中心, 北京 100875
3) 华南理工大学材料科学与工程学院, 广州 510640
PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par
ZHU Qingzhen1,2), XUE Wenbin1,2), LU Liang1), DU Jiancheng1,2), LIU Guanjun3), LI Wenfang3)
1) Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2) Beijing Radiation Center, Beijing 100875
3) School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
, , , , , . PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par[J]. Acta Metall Sin, 2011, 47(1): 74-80.

全文: PDF(1380 KB)  
摘要: 在硅酸盐电解液体系中, 采用交流微弧氧化方法在增强体体积分数为33%的 (Al2O3-SiO2)sf/AZ91D镁基复合材料表面制备出完整的保护性氧化膜. 利用SEM, EDS和XRD分析了氧化膜的形貌、成分和相组成, 测量了膜层的显微硬度分布. 采用电化学阻抗谱(EIS)评价了微弧氧化表面处理前后复合材料的电化学腐蚀性能, 确立了不同浸泡时间对应的等效电路. 结果表明, 微弧氧化膜主要由MgO和Mg2SiO4相组成, 最大硬度达到1017 HV. 氧化膜电化学阻抗模值|Z|与镁合金基体相比大幅度提高, 耐腐蚀性能明显高于基体. 在3.5%NaCl溶液里浸泡96 h后, EIS出现感抗弧, 显示膜内部开始出现点蚀破坏. 氧化膜耐蚀性由膜内致密层特性所决定.
关键词 镁基复合材料微弧氧化膜电化学阻抗谱(EIS)    
Abstract:A thick protective ceramic coating on 33% (Al2O3-SiO2)sf/AZ91D (volume fraction) magnesium matrix composite was prepared by the microarc oxidation (MAO) technique in silicate electrolyte. SEM, EDS and XRD were employed to analyze the surface morphology, composition and phase constituent of the coating, furthermore, the microhardness profile of the coating was also measured. The electrochemical corrosion properties of magnesium matrix composite before and after the MAO surface treatment were evaluated by electrochemical impedance spectroscopy (EIS), and the equivalent circuits corresponding to different immersion times were suggested. The results show that the fiber-reinforced composite surface is completely covered by the MAO coating. The ceramic coating mainly consists of MgO and Mg2SiO4 phases. The maximum microhardness of coating is up to 1017 HV. The electrochemical impedance modulus, |Z|, of the coated magnesium matrix composite increases significantly compared with bare composite, thus the magnesium matrix composite coated by MAO displays a good corrosion resistance. The occurrence of inductive loop in EIS of coated composite after 96 h immersion in 3.5% NaCl solution implies the pitting deterioration in the coating. The corrosion resistance of coated magnesium matrix composite is determined by the properties of inner compact layer of MAO coating.
Key wordsmagnesium matrix composite    microarc oxidation coating    electrochemeical impedance spectroscopy (EIS)
收稿日期: 2010-07-08     
基金资助:

国家自然科学基金项目51071031和北京市自然科学基金项目2102018资助

作者简介: 朱庆振, 男, 1985年生, 硕士生
[1] Tian J, Li W F, Han L F, Peng J H, Liu G. Mater Rev, 2009; 23(9): 71

(田君, 李文芳, 韩利发, 彭继华, 刘刚. 材料导报, 2009; 23(9): 71)

[2] Liang J, Hu L T, Hao J C. Appl Surf Sci, 2007; 253: 6939

[3] Jiang B L, Zhang J M, Shi H Y. Chin J Nonferrous Met, 2004; 14: 539

(蒋百灵, 张菊梅, 时惠英. 中国有色金属学报, 2004; 14: 539)

[4] Xue W B, Wu X L, Li X J, Tian H. J Alloys Compd, 2006; 425: 302

[5] Xue W B. Appl Surf Sci, 2006; 252: 6195

[6] Xin S G, Song L X, Zhao R G, Hu X F. J Inorg Mater, 2006; 21: 223

(辛世刚, 宋力昕, 赵容根, 胡行方. 无机材料学报, 2006; 21: 223)

[7] Wang Y K, Xiong R Z, Sheng L, Li B S. Ordnance Mater Sci Eng, 1998; 21(4): 25

(王永康, 熊仁章, 盛 磊, 李炳生. 兵器材料科学与工程, 1998; 21(4): 25)

[8] Wang Y Q, Zheng M Y,Wu K. Mater Lett, 2005; 59: 1727

[9] Wang Y Q, Wu K, Zheng M Y. Surf Coat Technol, 2006; 201: 353

[10] Arrabal R, Matykina E, Skeldon P, Thompson G E. Appl Surf Sci, 2009; 255: 5071

[11] Xue W, Jin Q, Zhu Q, Hua M, Ma Y. J Alloys Compd, 2009; 482: 208

[12] Xue W B, Jin Q, Zhu Q Z, Ma Y Y. J Inorg Mater, 2009; 24: 612

(薛文斌, 金乾, 朱庆振, 马跃宇. 无机材料学报, 2009; 24: 612

[13] Liu G J, Li W F , Peng J H, Yao J G. Acta Mater Compos Sin, 2007; 24(2): 7

(刘贯军, 李文芳, 彭继华, 尧建刚. 复合材料学报, 2007; 24(2): 7)

[14] Hu H L, Gao N N, Yu Y C, Li N. Electroplat Finish, 2009; 28(12): 35

(胡会利, 高宁宁, 于元春, 李 宁. 电镀与涂饰, 2009; 28(12): 35)

[15] Cao C N. Corrosion Electrochemistry. Beijing: Chemical Industry Press, 1994: 91

(曹楚南. 腐蚀电化学. 北京: 化学工业出版社, 1994: 91)

[16] Anik M, Celikten G. Corr Sci, 2007; 49: 1878

[17] Chen J,Wang J Q, Han E H, Dong J H, Ke W. Electrochim Acta, 2007; 52: 3299

[18] He M F, Liu L, Wu Y T, Tang Z X, Hu W B. Corr Sci, 2008; 50: 32677

[19] Cao C N, Zhang J Q. Introduction to Electrochemistry Impedance Spectroscopy. Beijing: Science Press, 2002: 26

(曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 26)
[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[3] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[4] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[5] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[8] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[9] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[10] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[11] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.
[12] 袁蕾 王华明 . 镍基固溶体增韧Cr13Ni5Si2合金在含Cl-溶液中的腐蚀行为[J]. 金属学报, 2009, 45(11): 1384-1389.
[13] 王艳秋; 吴昆; 郑明毅 . SiCw/AZ91镁基复合材料的微弧氧化行为及涂层的耐腐蚀性能[J]. 金属学报, 2007, 43(6): 631-636 .
[14] 陈礼清; 董群; 郭金花; 毕敬; 徐永波 . TiC/AZ91D镁基复合材料高温压缩变形行为[J]. 金属学报, 2005, 41(3): 326-332 .
[15] 李晓军; 柴东朗; 郗雨林 . SiCp增强镁基复合材料微区应力场的仿真模拟[J]. 金属学报, 2004, 40(9): 927-929 .