|
|
原位生成铁基复合材料中TiB2的三维形貌重构 |
王宝刚1, 易红亮1( ), 王国栋1, 骆智超2,3, 黄明欣2,3 |
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819 2 香港大学机械工程系 香港 00852 3 香港大学深圳研究院 深圳 518000 |
|
Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites |
Baogang WANG1, Hongliang YI1( ), Guodong WANG1, Zhichao LUO2,3, Mingxin HUANG2,3 |
1 State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China 2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 00852, China 3 Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518000, China |
引用本文:
王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
Baogang WANG,
Hongliang YI,
Guodong WANG,
Zhichao LUO,
Mingxin HUANG.
Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. Acta Metall Sin, 2019, 55(1): 133-140.
[1] | Rana R.High modulus steels[J]. Can. Metall. Quart., 2014, 53: 241 | [2] | Bouaziz O, Zurob H, Huang M X.Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84: 937 | [3] | Bonnet F, Daeschler V, Petitgand G.High modulus steels: New requirement of automotive market. How to take up challenge[J]. Can. Metall. Quart., 2014, 53: 243 | [4] | Kulikowski Z, Godfrey T M T, Wisbey A, et al. Mechanical and microstructural behaviour of a particulate reinforced steel for structural applications[J]. Mater. Sci. Technol., 2000, 16: 1453 | [5] | Yi H L, Sun L, Xiong X C.Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol., 2018, 34: 1112 | [6] | Anal A, Bandyopadhyay T K, Das K.Synthesis and characterization of TiB2-reinforced iron-based composites[J]. J. Mater. Process. Technol., 2006, 172: 70 | [7] | Li B H, Liu Y, He L, et al.Fabrication of in situ TiB2 reinforced steel matrix composite by vacuum induction melting and its microstructure and tensile properties[J]. Int. J. Cast Met. Res., 2010, 23: 211 | [8] | Lü W J, Zhang X N, Zhang H, et al.Growth mechanism of reinforcement in in situ processed TiB/Ti composites[J]. Acta Metall. Sin., 2000, 36: 104(吕维洁, 张晓农, 张获等. 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36: 104) | [9] | Kuang J C, Fu H G.Mechanical properties and wear resistance of In-situ synthesized (TiB2+Fe2B)/ferro-base composites[J]. Lubr. Eng., 2007, 32(8): 81(匡加才, 符寒光. 原位合成(TiB2+Fe2B)/铁基复合材料的力学性能和耐磨性[J]. 润滑与密封, 2007, 32(8): 81) | [10] | Zhang F, Li X D.Computer simulation of microstructure for metal matrix composites[J]. Chin. J. Nonferrous Met., 2014, 24: 97(张赋, 李旭东. 金属基复合材料微观组织结构的计算机模拟[J]. 中国有色金属学报, 2014, 24: 97) | [11] | Luo Z C, He B B, Li Y Z, et al.Growth mechanism of primary and eutectic TiB2 particles in a hypereutectic steel matrix composite[J]. Metall. Mater. Trans., 2017, 48A: 1981 | [12] | Akhtar F.Ceramic reinforced high modulus steel composites: Processing, microstructure and properties[J]. Can. Metall. Quart., 2014, 53: 253 | [13] | Feng Y J.Strengthening of steels by ceramic phases [D]. Westf?lischen: RWTH Aachen University, 2013 | [14] | Chen S, Seda P, Krugla M, et al.High-modulus steels reinforced with ceramic particles through ingot casting process[J]. Mater. Sci. Technol., 2016, 32: 992 | [15] | Springer H, Fernandez R A, Duarte M J, et al.Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2[J]. Acta Mater., 2015, 96: 47 | [16] | Zhang H, Springer H, Aparicio-Fernández R, et al.Improving the mechanical properties of Fe-TiB2 high modulus steels through controlled solidification processes[J]. Acta Mater., 2016, 118: 187 | [17] | Aparicio-Fernández R, Springer H, Szczepaniak A, et al.In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels[J]. Acta Mater., 2016, 107: 38 | [18] | Tanaka K, Saito T.Phase equilibria in TiB2-reinforced high modulus steel[J]. J. Phase Equilib., 1999, 20: 207 | [19] | Wu R J.The present condition and prospects on metal matrix composites[J]. Acta Metall. Sin., 1997, 65: 78(吴人洁. 金属基复合材料的现状与展望[J]. 金属学报, 1997, 65: 78) | [20] | Ma Z Y, Bi J, Lü Y X, et al.On the in situ forming TiB2 reinforced Al composite[J]. Acta Metall. Sin., 1992, 28(9): 87(马宗义, 毕敬, 吕毓雄等. 原位生长TiB2增强Al复合材料的研究[J]. 金属学报, 1992, 28(9): 87) | [21] | Huang M X, He B B, Wang X, et al.Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification[J]. Scr. Mater., 2015, 99: 13 | [22] | Cha L M, Lartigue-Korinek S, Walls M, et al.Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification[J]. Acta Mater., 2012, 60: 6382 | [23] | Yang N, Sinclair I.Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite[J]. Metall. Mater. Trans., 2003, 34A: 2017 | [24] | Llorca J.An analysis of the influence of reinforcement fracture on the strength of discontinuously-reinforced metal-matrix composites[J]. Acta Metall. Mater., 1995, 43: 181 | [25] | Bacon D H, Edwards L, Moffatt J E, et al.Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles[J]. Acta Mater., 2011, 59: 3373 | [26] | Li Y Z, Luo Z C, Yi H L, et al.Damage mechanisms of a TiB2-reinforced steel matrix composite for lightweight automotive application[J]. Metall. Mater. Trans., 2016, 3E: 203 | [27] | Hadjem-Hamouche Z H, Chevalier J P, Cui Y T, et al. Deformation behavior and damage evaluation in a new titanium diboride (TiB2) steel-based composite[J]. Steel Res. Int., 2012, 83: 538 | [28] | Dammak M, Ksaeir I, Brinza O, et al.Experimental analysis of damage of Fe-TiB2 metal matrix composites under complex loading [A]. 21ème Congrès Fran?ais de Mécanique[C]. Bordeaux: I-Revues, 2013: 1 | [29] | He L, Liu Y, Li J, et al.Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys[J]. Mater. Des., 2012, 36: 88 | [30] | Lartigue-Korinek S, Walls M, Haneche N, et al.Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2[J]. Acta Mater., 2015, 98: 297 | [31] | Springer H, Baron C, Szczepaniak A, et al.Stiff, light, strong and ductile: Nano-structured high modulus steel[J]. Sci. Rep., 2017, 7: 2757 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|