Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 133-140    DOI: 10.11900/0412.1961.2018.00297
  本期目录 | 过刊浏览 |
原位生成铁基复合材料中TiB2的三维形貌重构
王宝刚1, 易红亮1(), 王国栋1, 骆智超2,3, 黄明欣2,3
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 香港大学机械工程系 香港 00852
3 香港大学深圳研究院 深圳 518000
Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites
Baogang WANG1, Hongliang YI1(), Guodong WANG1, Zhichao LUO2,3, Mingxin HUANG2,3
1 State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 00852, China
3 Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518000, China
引用本文:

王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. Acta Metall Sin, 2019, 55(1): 133-140.

全文: PDF(6033 KB)   HTML
摘要: 

采用腐蚀法和计算机辅助设计(Creo Parametric)技术重构了原位生成Fe-TiB2复合材料中增强相TiB2在铁素体基体中的三维形貌,利用OM和SEM对增强相TiB2的二维形貌和三维形貌进行比对分析,并结合压缩实验重新诠释了该材料的断裂机理。结果表明:单晶TiB2初生相为六边形端面的八面体棱柱结构,多由2个或多个尺寸不一的单晶棱柱交错贯穿组成,其空间位置杂乱无章;共晶相TiB2由瓣状/细柱状相和枝晶状相组成。Fe-TiB2复合材料在承受载荷时,瓣状/细柱状和枝晶状共晶相相较于初生相TiB2更容易发生脆断,成为材料断裂失效的主要诱因。二维微观组织观察到的小颗粒TiB2相在实际空间中并不存在,通过控制凝固过程获得真正三维空间上的小颗粒TiB2相对该复合材料的性能至关重要。

关键词 铁基复合材料增强相TiB2三维形貌初生相共晶相    
Abstract

TiB2 strengthened Fe matrix composites (Fe-TiB2) are potential lightweight materials for lightweight structure materials as they possess high modulus, low density, high strength and good ductility. More importantly, Fe-TiB2 composite can be produced by eutectic solidification, which is suitable for massive production using thin slab casting and strip casting in the steel industry. The microstructure of Fe-TiB2 composite is composed of ferrite matrix, primary TiB2 and eutectic TiB2 reinforcements. Ceramic TiB2 is a hard brittle phase and it is easy to generate stress concentration when bearing load. The shape and size of TiB2 can affect the mechanical properties of Fe-TiB2 composite and the formability of sheet metal. The morphology and size of TiB2 reinforcements are commonly observed using optical or electron microscope, which can only provide two-dimensional (2D) cross-section of the reinforcements. Nevertheless, the TiB2 particles have various aspect ratios in three-dimensional (3D) space, which have not yet been well investigated. The present work proposes a new method combining deep etching and computer aided design (Creo Parametric) technology to reconstruct the 3D morphology of TiB2 reinforcements in the Fe-TiB2 composites. The OM, SEM were used to compare and analyze the 2D and 3D morphologies of the TiB2 reinforcements. The fracture mechanism of the Fe-TiB2 composite was reinterpreted by compression test. The results indicated that the primary TiB2 reinforcements have an octahedral prism structure, which is mostly composed of two or even more single crystal prisms, and are randomly distributed in the matrix without preferred orientations. The eutectic TiB2 reinforcements consist of lamelliform/fine columnar phase and dendrite phase. The lamelliform/fine columnar and dendrite eutectic phase in Fe-TiB2 composite are more prone to brittle fracture than the primary phase TiB2 during loading. Therefore, it is the main cause of fracture failure of the material during loading. The small TiB2 particles observed by 2D microstructure do not exist in real 3D space. It is proposed that small and spherical TiB2 particles are preferred and could be produced by controlling solidification process.

Key wordsFe matrix composite    reinforced phase TiB2    three-dimensional morphology    primary phase    eutectic phase
收稿日期: 2018-07-01     
ZTFLH:  O766  
基金资助:国家自然科学基金项目Nos.51722402和U1560204及中央高校基本科研业务费专项资金项目No.N170705001
作者简介:

作者简介 王宝刚,男,1987年生,博士

图1  Fe-13%TiB2复合材料的OM像及其抽象示意图
图2  Fe-13%TiB2复合材料深腐蚀后的SEM像及增强相TiB2三维形貌重构示意图
图3  Fe-13%TiB2复合材料经不同压缩应变量后的SEM像
图4  剖切重构后的三维增强相TiB2及其对应的典型的二维形貌示意图
[1] Rana R.High modulus steels[J]. Can. Metall. Quart., 2014, 53: 241
[2] Bouaziz O, Zurob H, Huang M X.Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84: 937
[3] Bonnet F, Daeschler V, Petitgand G.High modulus steels: New requirement of automotive market. How to take up challenge[J]. Can. Metall. Quart., 2014, 53: 243
[4] Kulikowski Z, Godfrey T M T, Wisbey A, et al. Mechanical and microstructural behaviour of a particulate reinforced steel for structural applications[J]. Mater. Sci. Technol., 2000, 16: 1453
[5] Yi H L, Sun L, Xiong X C.Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol., 2018, 34: 1112
[6] Anal A, Bandyopadhyay T K, Das K.Synthesis and characterization of TiB2-reinforced iron-based composites[J]. J. Mater. Process. Technol., 2006, 172: 70
[7] Li B H, Liu Y, He L, et al.Fabrication of in situ TiB2 reinforced steel matrix composite by vacuum induction melting and its microstructure and tensile properties[J]. Int. J. Cast Met. Res., 2010, 23: 211
[8] Lü W J, Zhang X N, Zhang H, et al.Growth mechanism of reinforcement in in situ processed TiB/Ti composites[J]. Acta Metall. Sin., 2000, 36: 104(吕维洁, 张晓农, 张获等. 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36: 104)
[9] Kuang J C, Fu H G.Mechanical properties and wear resistance of In-situ synthesized (TiB2+Fe2B)/ferro-base composites[J]. Lubr. Eng., 2007, 32(8): 81(匡加才, 符寒光. 原位合成(TiB2+Fe2B)/铁基复合材料的力学性能和耐磨性[J]. 润滑与密封, 2007, 32(8): 81)
[10] Zhang F, Li X D.Computer simulation of microstructure for metal matrix composites[J]. Chin. J. Nonferrous Met., 2014, 24: 97(张赋, 李旭东. 金属基复合材料微观组织结构的计算机模拟[J]. 中国有色金属学报, 2014, 24: 97)
[11] Luo Z C, He B B, Li Y Z, et al.Growth mechanism of primary and eutectic TiB2 particles in a hypereutectic steel matrix composite[J]. Metall. Mater. Trans., 2017, 48A: 1981
[12] Akhtar F.Ceramic reinforced high modulus steel composites: Processing, microstructure and properties[J]. Can. Metall. Quart., 2014, 53: 253
[13] Feng Y J.Strengthening of steels by ceramic phases [D]. Westf?lischen: RWTH Aachen University, 2013
[14] Chen S, Seda P, Krugla M, et al.High-modulus steels reinforced with ceramic particles through ingot casting process[J]. Mater. Sci. Technol., 2016, 32: 992
[15] Springer H, Fernandez R A, Duarte M J, et al.Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2[J]. Acta Mater., 2015, 96: 47
[16] Zhang H, Springer H, Aparicio-Fernández R, et al.Improving the mechanical properties of Fe-TiB2 high modulus steels through controlled solidification processes[J]. Acta Mater., 2016, 118: 187
[17] Aparicio-Fernández R, Springer H, Szczepaniak A, et al.In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels[J]. Acta Mater., 2016, 107: 38
[18] Tanaka K, Saito T.Phase equilibria in TiB2-reinforced high modulus steel[J]. J. Phase Equilib., 1999, 20: 207
[19] Wu R J.The present condition and prospects on metal matrix composites[J]. Acta Metall. Sin., 1997, 65: 78(吴人洁. 金属基复合材料的现状与展望[J]. 金属学报, 1997, 65: 78)
[20] Ma Z Y, Bi J, Lü Y X, et al.On the in situ forming TiB2 reinforced Al composite[J]. Acta Metall. Sin., 1992, 28(9): 87(马宗义, 毕敬, 吕毓雄等. 原位生长TiB2增强Al复合材料的研究[J]. 金属学报, 1992, 28(9): 87)
[21] Huang M X, He B B, Wang X, et al.Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification[J]. Scr. Mater., 2015, 99: 13
[22] Cha L M, Lartigue-Korinek S, Walls M, et al.Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification[J]. Acta Mater., 2012, 60: 6382
[23] Yang N, Sinclair I.Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite[J]. Metall. Mater. Trans., 2003, 34A: 2017
[24] Llorca J.An analysis of the influence of reinforcement fracture on the strength of discontinuously-reinforced metal-matrix composites[J]. Acta Metall. Mater., 1995, 43: 181
[25] Bacon D H, Edwards L, Moffatt J E, et al.Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles[J]. Acta Mater., 2011, 59: 3373
[26] Li Y Z, Luo Z C, Yi H L, et al.Damage mechanisms of a TiB2-reinforced steel matrix composite for lightweight automotive application[J]. Metall. Mater. Trans., 2016, 3E: 203
[27] Hadjem-Hamouche Z H, Chevalier J P, Cui Y T, et al. Deformation behavior and damage evaluation in a new titanium diboride (TiB2) steel-based composite[J]. Steel Res. Int., 2012, 83: 538
[28] Dammak M, Ksaeir I, Brinza O, et al.Experimental analysis of damage of Fe-TiB2 metal matrix composites under complex loading [A]. 21ème Congrès Fran?ais de Mécanique[C]. Bordeaux: I-Revues, 2013: 1
[29] He L, Liu Y, Li J, et al.Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys[J]. Mater. Des., 2012, 36: 88
[30] Lartigue-Korinek S, Walls M, Haneche N, et al.Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2[J]. Acta Mater., 2015, 98: 297
[31] Springer H, Baron C, Szczepaniak A, et al.Stiff, light, strong and ductile: Nano-structured high modulus steel[J]. Sci. Rep., 2017, 7: 2757
[1] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[2] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[3] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[4] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[5] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[6] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[7] 刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.
[8] 张元,李新中,刘国怀,苏彦庆,郭景杰,傅恒志. 定向凝固Ti-46Al-2Cr-2Nb合金领先相及其生长取向与凝固进程的相关性[J]. 金属学报, 2013, 49(9): 1061-1068.
[9] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
[10] 张永皞 张志清 Robert E. Sanders 刘庆. AA3104铝合金均匀化过程中的(Fe, Mn)Al6相向α-Al12(Fe, Mn)3Si相转变研究[J]. 金属学报, 2012, 48(3): 351-356.
[11] 郭德燕 宋佳佳 蔡亮 毛勇. 高低温熔体混合对Au-20Sn共晶合金凝固组织的影响[J]. 金属学报, 2012, 48(11): 1387-1393.
[12] 张超; 王强; 高翱; 刘铁; 娄长胜; 赫冀成 . 强磁场对Sb-4.8wt.%Mn合金初生相行为的影响[J]. 金属学报, 2008, 44(6): 713-717 .
[13] 杨卯生; 赵爱民; 毛卫民; 钟雪友 . 60Si2Mn钢半固态初生相形成与演变机制[J]. 金属学报, 2002, 38(7): 689-693 .
[14] 朱平;陈丙森. 系列示波冲击断口三维形貌几何特征和断裂性能[J]. 金属学报, 1998, 34(1): 63-69.