|
|
原位(TiB2-TiB)/Cu复合材料组织与性能研究 |
任建强, 梁淑华( ), 姜伊辉, 杜翔 |
西安理工大学材料科学与工程学院 西安 710048 |
|
Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites |
Jianqiang REN, Shuhua LIANG( ), Yihui JIANG, Xiang DU |
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
引用本文:
任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
Jianqiang REN,
Shuhua LIANG,
Yihui JIANG,
Xiang DU.
Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. Acta Metall Sin, 2019, 55(1): 126-132.
[1] | Koch C C.Nanostructured Materials: Processing, Properties and Applications [M]. 2nd Ed., Norwich: William Andrews Publishing, 2007: 397 | [2] | Shen Y T, Cui C X, Meng F B, et al.Fabrication of Cu-A12O3 composites with high strength and electric conductivity[J]. Acta Metall. Sin., 1999, 35: 889(申玉田, 崔春翔, 孟凡斌等. 高强度高导电率Cu-Al2O3复合材料的制备[J]. 金属学报, 1999, 35: 889) | [3] | Wang N Y, Tu J P, Yang Y Z, et al.Preparation and microstructure of nanoscale TiB2/Cu in-situ composites[J]. Chin. J. Nonferrous Met., 2002, 12: 151(王耐艳, 涂江平, 杨友志等. 原位反应纳米TiB2/Cu复合材料的制备和微结构[J]. 中国有色金属金属学报, 2002, 12: 151) | [4] | Lu K.The future of metals[J]. Science, 2010, 328: 319 | [5] | Yan C K, Zhou Y C.Mechanical properties of 2SnC particulate reinforced Cu matrix composites[J]. Acta Metall. Sin., 2003, 39: 99(闫程科, 周延春. Ti2SnC颗粒增强铜基复合材料的力学性能[J]. 金属学报, 2003, 39: 99) | [6] | Zhou Y, Zhu X K, Su Y, et al.Reactive self-generated Cu-TiB2-TiC composites[J]. Chin. J. Nonferrous Met., 1998, 8(Suppl.2): 15(周芸, 朱心坤, 苏云 等. 反应自生Cu-TiB2-TiC复合材料 [J]. 中国有色金属金属学报, 1998, 8(增刊): 15) | [7] | Guo M X, Wang M P, Shen K, et al.Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts[J]. J. Alloys Compd., 2008, 460: 585 | [8] | Sembosh S, Al-Kassab T, Gemma R, et al.Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity[J]. Ultramicroscopy, 2009, 109: 593 | [9] | Bagheri G A.The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. J. Alloys Compd., 2016, 676: 120 | [10] | Madtha S, Lee C, Chandran K S R. Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic[J]. J. Am. Ceram. Soc., 2008, 91: 1319 | [11] | Zou C L, Kang H J, Wang W, et al.Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. J. Alloys Compd., 2016, 687: 312 | [12] | Guo M X, Wang M P, Wang M P.Relationship between microstructure, properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction[J]. Acta Mater., 2009, 57: 4568 | [13] | Wang F C, Zhang Z H, Luo J, et al.A novel rapid route for in situ synthesizing TiB-TiB2 composites[J]. Compos. Sci. Technol., 2009, 69: 2682 | [14] | Wen G, Li S B, Zhang B S, et al.Reaction synthesis of TiB2-TiC composites with enhanced toughness[J]. Acta Mater., 2001, 49: 1463 | [15] | Sobhani M, Arabi H, Mirhabibi A, et al.Microstructural evolution of copper-titanium alloy during in-situ formation of TiB2 particles[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2994 | [16] | Jiang Y H, Wang C, Liang S H, et al.TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper[J]. Mater. Charact., 2016, 121: 76 | [17] | Jiang Y H, Li D, Liang S H, et al.Phase selection of titanium boride in copper matrix composites during solidification[J]. J. Mater. Sci., 2017, 52: 2957 | [18] | Gorsse S, Miracle D B.Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Mater., 2003, 51: 2427 | [19] | Liu B X, Huang L J, Geng L, et al.Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing[J]. Mater. Sci. Eng., 2014, A595: 257 | [20] | Selvakumar M, Chandrasekar P, Mohanraj M, et al.Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti-TiB composites[J]. Mater. Lett., 2015, 144: 58 | [21] | Feng H B, Zhou Y, Jia D C, et al.Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Cryst. Growth Des., 2006, 6: 1626 | [22] | Meng Q C, Feng H B, Chen G C, et al.Defects formation of the in situ reaction synthesized TiB whiskers[J]. J. Cryst. Growth, 2009, 311: 1612 | [23] | Rahoma H K S, Chen Y, Wang X P, et al. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy[J]. J. Alloys Compd., 2015, 627: 415 | [24] | Li S F, Kondoh K, Lmai H, et al.Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion[J]. Mater. Des., 2016, 95: 127 | [25] | Tang R Z, Tian R Z.Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009: 1(唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 1) | [26] | Verhoeven J D, Downing H L, Chumbley L S, et al.The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J. Appl. Phys., 1989, 65: 1293 | [27] | Qu L, Wang E G, Han K, et al.Studies of electrical resistivity of an annealed Cu-Fe composite[J]. J. Appl. Phys., 2013, 113: 173708 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|