Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1735-1744    DOI: 10.11900/0412.1961.2018.00151
  本期目录 | 过刊浏览 |
镁合金焊缝液化裂纹敏感性及预测方法探究
陈树君, 王宣, 袁涛(), 李晓旭
北京工业大学机电学院汽车结构部件先进制造技术教育部工程研究中心 北京 100124
Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds
Shujun CHEN, Xuan WANG, Tao YUAN(), Xiaoxu LI
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
引用本文:

陈树君, 王宣, 袁涛, 李晓旭. 镁合金焊缝液化裂纹敏感性及预测方法探究[J]. 金属学报, 2018, 54(12): 1735-1744.
Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. Acta Metall Sin, 2018, 54(12): 1735-1744.

全文: PDF(10112 KB)   HTML
摘要: 

以AZ31与AZ91镁合金为母材,AZ61与AZ92镁合金为填充焊丝,利用冷金属过渡焊接(CMT)方法进行横向拘束环行焊缝裂纹实验,探究AZ系列镁合金部分熔化区的液化现象,并结合液化裂纹产生机理提出一种定性判断镁合金液化裂纹敏感性的方法。结果表明,焊接过程中,AZ91镁合金焊缝边缘发生了γ (Mg17Al12)相与富Mg α相的共晶反应,产生了液相,形成了部分熔化区;在AZ31镁合金中不存在γ (Mg17Al12)相,液化现象不明显,部分熔化区较小。同时,提出了基于二元合金相图的镁合金液化裂纹敏感性判断方法,以判断镁合金母材和焊丝成分对焊缝部分熔化区液化裂纹敏感性的影响规律,即,母材为AZ91时的液化裂纹敏感性比母材为AZ31时更高,焊丝为AZ92时的液化裂纹敏感性较焊丝为AZ61时更低。

关键词 镁合金CMT-MIG液化裂纹敏感性预测化学成分    
Abstract

Magnesium alloys has a wide application prospect due to their good properties, such as high specific strength and specific stiffness, but the susceptibility of liquation cracking is also pretty high. The liquation in partially melted zone of AZ-series magnesium alloys were investigated with circular-patch welding test. The AZ91, AZ31 base alloys were welded with AZ61 and AZ92 filler wires by using the cold metal transter metal inert-gas (CMT-MIG) welding. The results show that, the liquation occurred along the weld edge of AZ91 with the eutectic reaction occurring between γ (Mg17Al12) phase and Mg-rich phase. The liquation susceptibility of AZ31 was pretty low as γ (Mg17Al12) was not present in base metal of AZ31. Meanwhile, a new method for predicting liquation cracking based on binary phase diagram was proposed. When the initial solidification temperature of weld is higher and the solidification temperature range of weld is shorter than those of base metal, the liquation crack susceptibility of weld is mostly higher. When the initial solidification temperature of weld is close to or below that of base metal, and the solidification temperature range of weld is close to or longer than that of base metal, the liquation cracking susceptibility of weld is lower. This method worked well on predicting the effect of composition of base metal and filler wires on liquation cracking, and the predicting results are consistent with the experimental results. That is, the liquation cracking susceptibility is higher with AZ91 base metal used than that with AZ31 base metal. And, the liquation cracking susceptibility is lower with AZ92 filler wire than that with AZ61 filler wire.

Key wordsmagnesium alloy    CMT-MIG welding    liquation cracking    susceptibility prediction    chemical composition
收稿日期: 2018-04-19     
ZTFLH:  TG401  
基金资助:国家自然科学基金项目No.51704013,北京市教委科研计划一般项目No.KM201810005016和中国博士后科学基金项目No.2016M600881
作者简介:

作者简介 陈树君,男,1971年生,教授,博士

图1  横向拘束环形焊缝裂纹实验装置
Material Alloy Al Zn Mn Mg
Workpiece/patch AZ31 3.0 1.0 0.6 Bal.
AZ91 9.0 0.7 0.2 Bal.
Filler wire AZ61 6.5 1.0 0.3 Bal.
AZ92 9.0 2.0 0.3 Bal.
表1  待焊试件及填充焊丝化学成分
图2  横向拘束环形焊缝裂纹实验待焊试件示意图
Weld # Workpiece Patch Filler wire Wire speed / (mmin-1) Current / A Travel speed / (mmin-1)
1 AZ31 AZ31 AZ61 7.0 89 0.36
2 AZ92 7.0 98 0.36
3 AZ91 AZ91 AZ61 7.0 90 0.36
4 AZ92 7.0 89 0.36
5 AZ91 AZ31 AZ61 7.0 87 0.36
6 AZ92 7.0 87 0.36
7 AZ31 AZ91 AZ61 7.0 98 0.36
8 AZ92 7.0 90 0.36
表2  镁合金横向拘束环形焊缝裂纹实验参数
图3  3号焊缝截面微观组织及EDS
图4  1号焊缝截面微观组织及EDS
图5  镁合金焊缝熔合区液化裂纹产生机制示意图
图6  A-B二元相图
图7  镁合金横向拘束环形焊缝上表面宏观形貌
[1] Froes F H, Eliezer D, Aghion E.The science, technology, and applications of magnesium[J]. JOM, 1998, 50(9): 30
[2] Ishihara S, Nan Z Y, Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A468-470: 214
[3] Li W, Zhou H, Zhou W, et al.Effect of cooling rate on ignition point of AZ91D-0.98 wt.% Ce magnesium alloy[J]. Mater. Lett., 2007, 61: 2772
[4] Montemor M F, Sim?es A M, Carmezim M J.Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection[J]. Appl. Surf. Sci., 2007, 253: 6922
[5] Munitz A, Cotler C, Stern A, et al.Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J]. Mater. Sci. Eng., 2001, A302: 68
[6] Rethmeier M, Kleinpeter B, Wohlfahrt H.MIG welding of magnesium alloys metallographic aspects[J]. Weld. World, 2004, 48: 28
[7] Yu Z H, Yan H G, Yin X Y, et al.Liquation cracking in laser beam welded joint of ZK60 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2891
[8] Ma B X, Zhao J X, Wang L P, et al.Research progress of welding hot crack of magnesium alloys[J]. Mater. Rev., 2016, 30(3): 81(马宝霞, 赵建勋, 王丽萍等. 镁合金焊接热裂纹的研究进展[J]. 材料导报, 2016, 30(3): 81)
[9] Zhou W, Long T Z, Mark C K.Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D[J]. Mater. Sci. Technol., 2007, 23: 1294
[10] Zhao X X.Liquefaction crack of welding[J]. Machinery, 1981,(11): 19(赵晓星. 焊接液化裂纹 [J]. 机械, 1981, (11): 19)
[11] Lippold J C, translated by Qu Z X, Zhang H Q, Wang D P. Welding Metallurgy and Weldability [M]. Beijing: Machinery Industry Press, 2017: 34(Lippold J C著, 屈朝霞, 张汉谦, 王东坡译. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2017: 34)
[12] Huang C, Kou S. Partially melted zone in aluminum welds—Liquation mechanism and directional solidification [J]. Weld. J., 2000, 79: 113-s
[13] Huang C, Kou S. Liquation cracking in full-penetration Al-Cu welds [J]. Weld. J., 2004, 83: 50-s
[14] Huang C, Kou S. Liquation cracking in full-penetration Al-Mg-Si welds [J]. Weld. J., 2004, 83: 111-s
[15] Cao G, Kou S. Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid [J]. Weld. J., 2006, 85: 9-s
[16] Sun D X.Study on weldability of magnesium alloys (AZ91D and AZ31B) [D]. Changchun: Jilin University, 2008(孙德新. 镁合金(AZ91D、AZ31B)焊接性的研究 [D]. 长春: 吉林大学, 2008)
[17] Yuan T.Study on welding metallurgy process and microstructure of magnesium welds with the external energy field [D]. Tianjin: Tianjin University, 2016(袁涛. 基于外加能量场的镁合金焊接冶金过程及微观组织研究 [D]. 天津: 天津大学, 2016)
[18] Yuan T, Chai X, Luo Z, et al.Predicting susceptibility of magnesium alloys to weld-edge cracking[J]. Acta Mater., 2015, 90: 242
[19] Chai X, Yuan T, Kou S. Liquation and liquation cracking in partially melted zones of magnesium welds [J]. Weld. J., 2016, 95: 57-s
[20] Yuan T, Luo Z, Liu Y Y.Study on sensitivity of magnesium alloy weld to liquefaction crack[J]. Weld. Technol., 2016, 45(12): 14(袁涛, 罗震, 刘亚云. 镁合金焊缝液化裂纹敏感性研究[J]. 焊接技术, 2016, 45(12): 14)
[21] Kou S.Welding Metallurgy[M]. 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2003: 301
[22] Flemings M C.Solidification Processing[M]. New York: McGraw-Hill, 1974: 15
[23] Kou S, Sun D K.Fluid flow and weld penetration in stationary arc welds[J]. Metall. Trans., 1985, 16A: 203
[24] Kou S, Wang Y H.Computer simulation of convection in moving arc weld pools[J]. Metall. Trans., 1986, 17A: 2271
[25] Tsai M C, Kou S.Marangoni convection in weld pools with a free surface[J]. Int. J. Numer. Methods Fluids, 1989, 9: 1503
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[11] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[13] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[15] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.