Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 1017-1024    DOI: 10.11900/0412.1961.2014.00615
  本期目录 | 过刊浏览 |
基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计*
耿遥祥1,2,韩凯明1,2,王英敏1,2,羌建兵1,2(),王清1,2,董闯1,张贵锋2,特古斯3,HAÜSSLER Peter1,4
2 大连理工大学材料科学与工程学院, 大连 116024
3 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室, 呼和浩特 010022
4 Physics Institute, Chemnitz University of Technology, Chemnitz 09107
COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL
Yaoxiang GENG1,2,Kaiming HAN1,2,Yingmin WANG1,2,Jianbing QIANG1,2(),Qing WANG1,2,Chuang DONG1,Guifeng ZHANG2,O TEGUS3,Peter HAÜSSLER1,4
1 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022
4 Physics Institute, Chemnitz University of Technology, Chemnitz 09107
引用本文:

耿遥祥,韩凯明,王英敏,羌建兵,王清,董闯,张贵锋,特古斯,HAÜSSLER Peter. 基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计*[J]. 金属学报, 2015, 51(8): 1017-1024.
Yaoxiang GENG, Kaiming HAN, Yingmin WANG, Jianbing QIANG, Qing WANG, Chuang DONG, Guifeng ZHANG, O TEGUS, Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL[J]. Acta Metall Sin, 2015, 51(8): 1017-1024.

全文: PDF(2552 KB)   HTML
摘要: 

依据团簇+连接原子模型设计具有高玻璃形成能力的Fe-B-Si-Ta软磁块体非晶合金, 以共晶点Fe83B17对应的共晶相Fe2B为基础, 根据最大径向原子数密度和孤立度原则, 得到以B为心的[B-B2Fe8]主团簇, 结合理想非晶合金团簇式的电子浓度判据, 构建出Fe-B二元非晶合金的理想团簇式[B-B2Fe8]Fe. 为提升Fe-B二元合金的非晶形成能力, 选择与Fe具有较大负混合焓的Si替代[B-B2Fe8]团簇的中心原子B, 得到Fe-B-Si三元非晶合金的理想团簇式[Si-B2Fe8]Fe. 由于Ta与B和Si间具有较大的负混合焓, 进一步以Ta替代[Si-B2Fe8]Fe团簇式中壳层位置的Fe原子, 设计出[Si-B2Fe8-xTax]Fe四元非晶系列成分. 结果表明, [Si-B2Fe8-xTax]Fe在x=0.4~0.7成分处均可形成直径为1.0 mm的非晶合金棒. 其中, [Si-B2Fe7.4Ta0.6]Fe合金的非晶形成能力最佳, 其非晶样品的约化玻璃转变温度Trg为0.584, 玻璃转变温度Tg为856 K, 过冷液相区宽度ΔTx达33 K. [Si-B2Fe8-xTax]Fe (x=0.4~0.7)块体非晶合金的Vickers硬度Hv随Ta的添加从1117 HV (x=0.4)上升到1154 HV (x=0.7). [Si-B2Fe7.6Ta0.4]Fe非晶合金具有良好的室温软磁性能, 其饱和磁化强度Bs为1.37 T, 矫顽力Hc为3.0 A/m.

关键词 团簇+连接原子模型团簇式Fe-B-Si-Ta非晶磁性    
Abstract

The structural and compositional features of amorphous alloys can be described by cluster-plus-glue atom model, which is an effective method for the composition design of amorphous alloys. In the Fe-B binary system, Fe2B phase is an intermetallic phase related to Fe83B17 eutectic point. Under the framework of the highest radial number density and isolation principle, the local structure of Fe2B phase is characterized by a B-centered Archimedean octahedral antiprism [B-B2Fe8] atomic cluster. Combined with the electron consistence criterion, the [B-B2Fe8]Fe (here the center and shell atoms are separated by a hyphen, a cluster is enclosed in square brackets, the glue atom is out square brackets) is then determined as an ideal cluster formula for Fe-B binary amorphous. To further enhance the glass-forming ability (GFA) of the alloy, the center B and shell Fe atoms in [B-B2Fe8]Fe are replaced with Si and Ta, respectively, due to their large negative enthalpy of mixing between Si-Fe and (B, Si)-Ta atomic pairs, and Fe-B-Si-Ta quaternary composition series, namely [Si-B2Fe8-xTax]Fe, are thus derived. The experimental results reveal that the bulk amorphous alloys with a diameter of 1.0 mm can be achieved for [Si-B2Fe8-xTax]Fe (x=0.4~0.7) compositions. Among them, [Si-B2Fe7.4Ta0.6]Fe (i.e. Fe70B16.67Si8.33Ta5, atomic fraction, %) is the best glass former, its glass transition temperature Tg, supercooled liquid region ΔTx and the reduced glass transition temperatures Trg are 856 K, 33 K and 0.584, respectively. The Vickers hardness, saturation magnetization and coercivity of the [Si-B2Fe7.6Ta0.4]Fe (i.e. Fe71.67B16.67Si8.33Ta3.33) amorphous alloy are measured to be 1117 HV, 1.37 T, and 3.0 A/m, respectively.

Key wordscluster-plus-glue atom model    cluster formula    Fe-B-Si-Ta bulk amorphous alloy    magnetism
收稿日期: 2014-11-07     
基金资助:* 国家自然科学基金项目51131002和51041011, 中央高校基础研究基金资助项目DUT13ZD102, 中国工程物理研究院重点发展基金项目2013A0301015, 国防基础科研项目B1520133007和国际热核聚变实验堆计划资助项目2013GB107003资助
图1  Fe2B相中以B和Fe为心的不同尺度(r)团簇的径向原子数密度(rA)
图2  Fe2B晶体相中以Fe为心的[Fe-Fe11B4]团簇和以B为心的[B-B2Fe8]团簇模型
Formula Atomic fraction / % r1 / nm r / (gcm-3)[23,24] M e/u
[B-B2Fe8]Fe Fe75B25 0.219 7.2 44.6 24.1
[B-B2Fe8]Fe3 Fe78.57B21.43 0.219 7.4 46.2 28.7
[B-B2Fe8]B Fe66.67B33.33 0.219 7.0 40.8 22.8
[B-B2Fe8]B3 Fe57.14B42.86 0.219 6.5 36.5 25.4
[B-B2Fe8]FeB2 Fe64.29B35.71 0.219 7.1 39.8 26.9
[B-B2Fe8]Fe2B Fe71.43B28.57 0.219 6.7 43.0 27.4
表1  Fe-B二元非晶的团簇式、原子分数、质量密度r, 平均原子量M, 团簇半径r1和单个团簇式所含价电子数e/u值
图3  [Si-B2Fe8-xTax]Fe条带样品、1.0和1.5 mm棒状样品的XRD谱
图4  [Si-B2Fe8-xTax]Fe中x=0.4时1 mm棒状样品和x=0.5~0.7时1.5 mm棒状样品的横截面OM像
图5  [Si-B2Fe8-xTax]Fe条带样品的DSC和DTA曲线
图6  [Si-B2Fe8-xTax]Fe合金中过冷液相区宽度(ΔTx)和约化玻璃转变温度(Trg)随Ta含量x的变化曲线
Formula Atomic fraction / % Dcr / mm Tg / K Tx / K ΔTx / K Tl / K Trg Hv / HV Tc / K
[Si-B2Fe8]Fe Fe75B16.67Si8.33 <1 - 839 - 1466 - - 723
[Si-B2Fe7.8Ta0.2]Fe Fe73.33B16.67Si8.33Ta1.67 <1 - 858 - 1509 - - 669
[Si-B2Fe7.7Ta0.3]Fe Fe72.5B16.67Si8.33Ta2.5 <1 - 865 - 1496 - - 634
[Si-B2Fe7.6Ta0.4]Fe Fe71.67B16.67Si8.33Ta3.33 1 843 873 30 1482 0.569 1117±6 604
[Si-B2Fe7.5Ta0.5]Fe Fe70.83B16.67Si8.33Ta4.17 1 850 884 34 1481 0.574 1130±10 587
[Si-B2Fe7.4Ta0.6]Fe Fe70B16.67Si8.33Ta5 1 856 889 33 1467 0.584 1143±10 571
[Si-B2Fe7.3Ta0.7]Fe Fe69.16B16.67Si8.33Ta5.83 1 856 891 35 1466 0.584 1154±11 559
[Si-B2Fe7.2Ta0.8]Fe Fe68.33B16.67Si8.33Ta6.67 <1 859 896 33 1476 0.582 - 520
表2  系列Fe-B-Si-Ta样品的团簇式及其原子分数、临界尺寸(Dcr), Tg, Tx, ΔTx, Tl, Trg, Hv和Tc
图7  [Si-B2Fe8-xTax]Fe (x=0, 0.4和0.6)非晶条带样品的磁化曲线和磁滞回线
[1] McHenry M E, Willard M A, Laughlin D E. Prog Mater Sci, 1999; 44: 291
[2] Torrens-Serra J, Stoica M, Bednarcik J, Eckert J, Kustov S. Appl Phys Lett, 2013; 102: 041904
[3] Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243
[4] Inoue A, Shen B L, Chang C T. Acta Mater, 2004; 52: 4093
[5] Roth S, Stoica M, Degmov J, Gaitzsch U, Eckert J, Schultz L. J Magn Magn Mater, 2006; 304: 192
[6] Inoue A, Shinohara Y, Gook J S. Mater Trans JIM, 1995; 36: 1427
[7] Suryanarayana C, Inoue A. Int Mater Rev, 2013; 58: 131
[8] Geng Y X, Wang Y M, Qiang J B, Wang Q, Kong F Y, Zhang G F, Dong C. Int J Miner Metall Mater, 2013; 20: 371
[9] Zhang W, Inoue A. Mater Trans, 2001; 42: 1835
[10] Guo S F, Qiu J L, Yu P, Xie S H, Chen W. Appl Phys Lett, 2014; 105: 161901
[11] Inoue A. Proc Jpn Acad, 1997; 73B: 19
[12] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H. J Phys, 2007; 40D: 273
[13] Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M, Shek C H. J Mater Res, 2007; 22: 573
[14] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907
[15] WangY M, Wang Q, Zhao J J, Dong C. Scr Mater, 2010; 63: 178
[16] Yuan L, Pang C, Wang Y M, Wang Q, Dong C. Intermetallics, 2010; 18: 1800
[17] Gaskell P H. In: Beck H, Güntherodt H J eds., Models for the Structure of Amorphous Metals. New York: Springer-Verlag, 1983: 5
[18] Dong C, Qiang J B, Yuan L, Wang Q, Wang Y M. Chin J Nonferrous Met, 2011; 21: 2502 (董 闯, 羌建兵, 袁 亮, 王 清, 王英敏. 中国有色金属学报, 2011; 21: 2502)
[19] Turnbull D. Contemp Phys, 1969; 10: 473
[20] Palumbo M, Cacciamani G, Bosco E, Baricco M. Intermetallics, 2003; 11: 1293
[21] Aronsson B, Lundstr?m T, Engstr?m I. Some Aspects of the Crystal Chemistry of Borides, Boro-Carbides and Silicides of the Transition Metals. New York: Springer-Verlag, 1968: 3
[22] Chen J X, Qiang J B, Wang Q, Dong C. Acta Phys Sin, 2012; 61: 046102 (陈季香, 羌建兵, 王 清, 董 闯. 物理学报, 2012; 61: 046102)
[23] Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, H?ussler P. Acta Mater, 2011; 59: 5917
[24] Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, H?ussler P. Philos Mag, 2014; 94: 2520
[25] Hasegawa R, Ray R. J Appl Phys, 1978; 49: 4174
[26] Ray R, Hasegawa R, Chou C P, Davis L A. Scr Metall, 1977; 11: 973
[27] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817
[28] Luborsky F E, Reeve J, Daviesa E A, Liebermann H R. IEEE Trans Magn, 1982; 18: 1385
[29] Yavari A R. Acta Metall, 1998; 36: 1863
[30] Guo S F, Liu L, Li N, Li Y. Scr Mater, 2010; 62: 329
[31] Torrens-Serra J, Bruna P, Stoica M, Roth S, Eckert J. J Non-Cryst Solids, 2013; 367: 30
[32] Turnbull D. Contemp Phys, 1969; 10: 473
[33] Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 065504
[34] Wang W H. Prog Mater Sci, 2012; 57: 487
[35] Wang W H. Prog Phys, 2013; 33: 285 (汪卫华. 物理学进展, 2013; 33: 285)
[36] Chen H S. Rep Prog Phys, 1980; 43: 380
[37] Gao F M, He J L, Wu E D, Liu S M, Li D C, Zhang S Y, Tian Y J. Phys Rev Lett, 2003; 91: 015502
[38] Ling H B, Li Q, Li H X, Zhang J J, Dong Y Q, Chang C T, Seonghoon Y. J Appl Phys, 2014; 115: 204901
[39] Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons Inc, 2009: 210
[40] Inoue A, Park R E. Mater Trans JIM, 1996; 37: 1715
[41] Babilas R, Nowosielski R. Arch Mater Sci Eng, 2010; 44: 24
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[4] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[5] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[6] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[7] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[8] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[9] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[10] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[11] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[12] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[13] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[14] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[15] 刘庆华,黄裕金,刘剑,胡侨丹,李建国. Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向[J]. 金属学报, 2013, 29(4): 391-398.