Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1507-1515    DOI: 10.11900/0412.1961.2015.00156
  本期目录 | 过刊浏览 |
耦合孪生的TWIP钢多晶体塑性变形行为研究*
孙朝阳1(),郭祥如1,郭宁1,杨竞1,黄杰1,2
1 北京科技大学机械工程学院, 北京 100083
2 宝山钢铁股份有限公司, 上海 201900
INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL
Chaoyang SUN1(),Xiangru GUO1,Ning GUO1,Jing YANG1,Jie HUANG1,2
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Baoshao Iron & Steel Co. Ltd., Shanghai 201900
引用本文:

孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
Chaoyang SUN, Xiangru GUO, Ning GUO, Jing YANG, Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL[J]. Acta Metall Sin, 2015, 51(12): 1507-1515.

全文: PDF(1250 KB)   HTML
  
摘要: 

基于已建立的单晶体塑性模型, 建立了耦合孪生的孪生诱发塑性(TWIP)钢多晶体塑性模型, 该模型采用有限元多晶均匀化处理相邻晶粒间的几何协调和应力平衡条件, 获得了单晶体与多晶体状态变量的关系, 开发了基于ABAQUS/UMAT的计算程序. 采用EBSD研究了TWIP钢拉伸应变分别为0.27和0.6时的织构变化, 并对模型进行了应力应变及织构演化的验证. 用该本构模型分别建立了拉伸、压缩和扭转3种简单加载条件下的有限元模型, 分析了不同变形条件下的宏观力学响应及织构演化规律. 结果表明: 拉伸变形过程中, 应变硬化现象和织构密度水平随应变增加而增强; 在压缩过程中, 织构类型随应变增加而发生变化, 但是织构密度水平基本不变; 而在扭转过程中, 当扭转应变较小时, 基本无织构形成, 随着应变增加, 织构逐渐显现出来, 这是因为变形较小时, 圆柱沿径向方向内部变形量较小, 故织构不明显.

关键词 TWIP钢晶体塑性多晶均匀化织构预测塑性变形    
Abstract

Twinning induced plasticity (TWIP) steel exhibits high strength and exceptional plasticity due to the formation of extensive twin under mechanical load and its ultimate tensile strength and elongation to failure ductility-value can be as high as 5×104 MPa%, which provide a new choice for automobile in developing the lightweight and improving safety. Generally, due to the texture was formed during process of plastic deformation, metal material appear anisotropic behavior. The deformation mechanisms, responsible for this high strain hardening, are related to the strain-induced microstructural changes, which was dominated by slip and twinning. Different deformation mechanisms, which can be activated at different stages of deformation, will strongly influence the stress strain response and the evolution of the microstructure. In this work, to predict the texture evolution under different loading conditions and understand these two deformation mechanisms of plastic deformation process, a polycrystal plasticity constitutive model of TWIP steel coupling slip and twinning was developed based on the crystal plasticity theory and single crystal plasticity constitutive model. A polycrystal homogenization method to keep geometry coordination and stress balance adjacent grains was used, which connected the state variables of single crystal and polycrystal. And then the model was implemented and programed based on the ABAQUS/UMAT platform. The texture evolution was obtained by EBSD at strain 0.27 and 0.60, respectively. The finite element models of tensile, compression and torsion processes were built by using the constitutive model. The mechanical response and texture evolution during plastic deformation process of TWIP steel were analyzed. The results show that with the increasing of the strain, the strain hardening phenomenon and texture density enhanced during the tensile process. Although texture types changed, texture density unchanged during the compression process. Owing to deformation increasing along the diameter direction, there is no obvious texture inside the cylinder when torsion deformation is small, texture emerged and enhanced gradually with the increasing of strain.

Key wordsTWIP steel    crystal plasticity    polycrystal homogenization    texture prediction    plasticity deformation
    
基金资助:*国家自然科学基金项目51105029 和51575039, 国家自然科学基金委员会与中国工程物理研究院联合基金项目U1330121 及非线性力学国家重点实验室开放基金项目LNM201512 资助
图1  多晶体塑性本构模型数值模拟的流程图
图2  孪生诱发塑性(TWIP)钢多晶体拉伸过程的有限元模型
图3  退火处理和晶粒取向随机分布后的TWIP钢在{100}, {110}和{111}面织构
图4  实验和模拟获得的应力、应变硬化率及孪晶体积分数的演化对比
图5  真应变为0.27和0.6时的织构图和ODF图的实验和模拟结果
图6  压缩和扭转过程应力、硬化率和孪晶体积分数随应变的演化
图7  TWIP钢压缩应变分别为0.8和1.52以及扭转应变分别为0.72和1.57时模拟的极图和ODF图
[1] Grassel O, Frommeyer G, Derder C, Hofmann H. J Phys IV France, 1997; 5: 383
[2] Shiekhelsouk M N, Favier V, Inal K, Cherkaoui M. Int J Plast, 2009; 25: 105
[3] Xie Q, Eyckens P, Vegter H, Moerman J, Van Bael A, Van Houtte P. Mater Sci Eng, 2013; A581: 66
[4] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[5] Li Y Q, Zhu L C, Liu Y, Wei Y J, Wu Y X, Tang D, Mi Z L. J Mech Phys Solids,?2013; 61: 2588
[6] Johnson G R, Cook W H. Eng Fract Mech, 1985; 21: 31
[7] Zerilli F J, Armstrong R W. J Appl Phys, 1987; 61: 1816
[8] Sun C Y, Huang J, Guo N, Yang J. Acta Metall Sin, 2014; 50: 1115
[8] (孙朝阳, 黄 杰, 郭 宁, 杨 竞. 金属学报, 2014; 50: 1115)
[9] Sun C Y, Guo X R, Huang J, Guo N, Wang S W, Yang J. Acta Metall Sin, 2015; 51: 357
[9] (孙朝阳, 郭祥如, 黄 杰, 郭 宁, 王善伟, 杨 竞. 金属学报, 2015; 51: 357)
[10] Yang J, Huang J, Sun C Y, Guo N, Wang B. Chin J Eng, 2015; 37: 1076
[10] (杨 竞, 黄 杰, 孙朝阳, 郭 宁, 王 斌. 工程科学学报, 2015; 37: 1076)
[11] Sun C Y, Guo N, Fu M W, Wang S W. Int J Plast, 2016; 76: 186
[12] Sachs E. Z Ver Deut Ing, 1928; 72: 734
[13] Taylor G I. J Inst Met, 1938; 62: 307
[14] Lebensohn R A, Tome C N. Acta Metall Mater, 1993; 41: 2611
[15] Kalidindi S R, Bronkhorst C A, Anand L. J Mech Phys Solids, 1992; 40: 537
[16] Engler O, Huh M Y, Tome C N. Metall Mater Trans, 2000; 31A: 2299
[17] Raabe D, Zhao Z, Mao W. Acta Mater, 2002; 50: 4379
[18] Zhao Z, Kuchnicki S, Radovitzky R, Cuitino A. Acta Mater, 2007; 55: 2361
[19] Cao P, Fang G, Lei L P, Zeng P. Acta Metall Sin, 2007; 43: 913
[19] (曹 鹏, 方 刚, 雷丽萍, 曾 攀. 金属学报, 2007; 43: 913)
[20] Kocks U F. Metall Trans, 1970; 1: 1121
[21] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2883
[22] Raabe D, Becker R C. Modell Simul Mater Sci Eng, 2000; 8: 445
[23] Li H W, Yang H. Trans Nonferrous Met Soc, 2012; 22: s222
[24] Saleh A A, Pereloma E V, Gazder A A. Mater Sci Eng, 2011; A528: 4537
[25] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D D, Bieler T R, Raabe D. Acta Mater, 2010; 58: 1152
[26] Salem A A, Kalidindi S R, Semiatin S L. Acta Mater, 2005; 53: 3495
[27] Barbier D, Favier V, Bolle B. Mater Sci Eng, 2012; A540: 212
[28] Guo Z X, Zhang Y F, Sui M L, Zhang Z. J Chin Electr Microsc Soc, 2012
(Suppl): 62
[28] (郭振玺, 张跃飞, 隋曼龄, 张 泽. 电子显微学报, 2012; (增刊): 62)
[29] Liu S, Qian L, Meng J, Ma P, Zhang F. Mater Sci Eng, 2015; A639: 425
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[8] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[11] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[12] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[13] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[14] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[15] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.