Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1046-1054    DOI: 10.11900/0412.1961.2013.00843
  本期目录 | 过刊浏览 |
Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*
车欣1, 梁兴奎2, 陈丽丽3, 陈立佳1(), 李锋1
1 沈阳工业大学材料科学与工程学院, 沈阳110870
2 新东北电气集团(沈阳)高压开关有限公司, 沈阳110025
3 沈阳晨光弗泰波纹管有限公司, 沈阳110141
MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY
CHE Xin1, LIANG Xingkui2, CHEN Lili3, CHEN Lijia1(), LI Feng1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 New Northeast Electric (Shenyang) High Voltage Switchgear Co. Ltd, Shenyang 110025
3 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
引用本文:

车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
Xin CHE, Xingkui LIANG, Lili CHEN, Lijia CHEN, Feng LI. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. Acta Metall Sin, 2014, 50(9): 1046-1054.

全文: PDF(4169 KB)   HTML
摘要: 

为了确定稀土元素Sc对T6态铸造Al-9.0%Si-4.0%Cu-0.4%Mg合金(质量分数)的低周疲劳行为的影响规律, 研究了T6态铸造Al-9.0%Si-4.0%Cu-0.4%Mg合金和Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc合金的低周疲劳行为. 结果表明, 在低的外加总应变幅下, Al-9.0%Si-4.0%Cu-0.4%Mg合金在整个疲劳变形期间均表现为循环应变硬化, Al-9.0%Si- 4.0%Cu-0.4%Mg-0.3%Sc合金在疲劳变形初期表现为循环应变硬化, 在疲劳变形后期则表现为循环稳定; 当外加总应变幅较高时, Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金均呈现循环应变硬化. Sc的加入可以有效地提高T6态Al-9.0%Si-4.0%Cu-0.4%Mg合金的循环变形抗力和低周疲劳寿命. 在较低的外加总应变幅下, T6态Al-9.0%Si- 4.0%Cu-0.4%Mg(-0.3%Sc)合金的循环变形机制为平面滑移, 当外加总应变幅较高时则为波状滑移机制.

关键词 Al-Si-Cu-Mg合金ScT6处理低周疲劳疲劳寿命循环应力响应循环变形机制    
Abstract

The Al-Si-Cu-Mg cast aluminum alloys have high mechanical properties and good cast performance. Due to their excellent comprehensive properties, the Al-Si-Cu-Mg cast aluminum alloys have wide application, and have become one of the most important structural materials applied in the equipment manufacturing industry. Actually, many key components in practical engineering application are often subjected to the alternating load, and thus the fatigue failure has become an important factor which concerns the safety and economy for those structures used in various engineering fields. Although some researches for the fatigue behavior of aluminum alloys have been performed, mainly focus on the regularity understanding. Especially, the influences of rare earth elements and heat-treat condition on the low-cycle fatigue behavior of aluminum alloys have not been comprehensively revealed. Obviously, the investigation concerning the microstructure and fatigue property of the Al-Si-Cu-Mg cast aluminum alloys can not only provide the theoretical basis for the development of new type cast aluminum alloys but also the reliable theoretical foundation for the safety design and reasonable use of these alloys. In order to determine the influence of rare earth element Sc on the low-cycle fatigue behavior of casting Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state, the cyclic stress response behavior, fatigue life behavior and cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) cast aluminum alloys with T6 treated states under low-cycle fatigue loading condition were investigated. The results show that at the low total strain amplitude, the Al-9.0%Si-4.0%Cu-0.4%Mg alloy exhibits the cyclic strain hardening during whole fatigue deformation, while the Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloys exhibit the cyclic strain hardening in the initial stage of fatigue deformation and then the stable cyclic stress response in the later stage of fatigue deformation. At the higher total strain amplitudes, the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys exhibit the cyclic strain hardening. The addition of Sc can effectively enhance the cyclic deformation resistance and prolong the fatigue lives of the Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state. At the lower total strain amplitudes, the cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys with T6 treated state is the plane slip, while at the higher total strain amplitudes, the cyclic deformation mechanism becomes the wavy slip.

Key wordsAl-Si-Cu-Mg alloy    Sc    T6 treatment    low-cycle fatigue    fatigue life    cyclic stress response    cyclic deformation mechanism
    
ZTFLH:  TG146.2  
基金资助:*辽宁省教育厅科学技术研究项目L2013056和沈阳市科技局科学技术研究项目F13-076-2-00资助
作者简介: null

车欣, 男, 朝鲜族, 1981年生, 讲师

图1  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织
图2  固溶处理前后Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc合金中Al3Sc相的TEM像和SAEDP
图3  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金中的q' (Al2Cu)相的TEM像和SAEDP
图4  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金循环应力响应曲线的比较
图5  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的总应变幅-疲劳寿命关系曲线
图6  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的循环应力-应变曲线
图7  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的应变幅-载荷反向周次关系曲线
图8  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金疲劳断裂后的位错组态
Alloy? sf' / MPa b ef' / % c K' / MPa n' ?Remark
Al-Si-Cu-Mg 394.74 -0.0822 2.8 -0.6594 333.93 0.0333 Det/2≥0.35%
1908.7 -1.5412 Det/2≤0.35%
Al-Si-Cu-Mg-Sc 365.14 -0.0671 8.7 -0.4892 438.58 0.0416 Det/2≥0.35%
699519 -2.1887 Det/2≤0.35%
表1  T6态Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的应变疲劳参数
图9  T6态Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc合金在Det/2=0.25%和0.45%的外加总应变幅下经过不同循环周次的疲劳变形后的位错组态
[1] Wang X, Chen G Q, Li B, Wu L M, Jiang D M. Rare Met, 2010; 29(1): 66
[2] Mo D F, He G Q, Hu Z F, Zhang W H. J Mater Eng, 2010; (7): 92
[2] (莫德峰, 何国球, 胡正飞, 张卫华. 材料工程, 2010; (7): 92)
[3] Wang G Q, Bian X F, Wang W M, Zhang J Y. Mater Lett, 2003; 57: 4083
[4] Moizumi K, Mine K, Tezuka H, Sato T. Mater Sci Forum, 2002; 396-402: 1371
[5] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[6] Wang Q G, Caceres C H, Griffiths J R. Metall Mater Trans, 2003;34A: 2901
[7] Cheng Z Z, Xie C H, Zhu C X. Light Met, 2010; (7): 58
[7] (陈振中, 解传浩, 朱成香. 轻金属, 2010; (7): 58 )
[8] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Int J Fatigue, 2001; 23: 265
[9] Manson S S. Exp Mech, 1965; 5: 193
[10] Nieslony A, Dsoki C E, Kaufmann H, Krug. Int J Fatigue, 2008; 30: 1967
[11] Miura Y, Joh C H, Katsube T. Mater Sci Forum, 2000; 331-337: 1031
[12] Zhou K, Li Y Q. Chin J Nonferrous Met, 1997; 7: 97
[12] (周 昆, 李云卿. 中国有色金属学报, 1997; 7: 97)
[13] Kendig K L, Miracle D B. Acta Mater, 2002; 50: 4165
[14] Li F, Wang Y, Chen L J, Zheng L, Zhou J Y. J Mater Sci, 2005; 40: 1529
[15] Kendig K L, Miracle D B. Acta Mater, 2004; 50: 4165
[16] Sjölander E, Seifeddine S. J Mater Process Technol, 2010; 210: 1249
[17] Kim M, Hong Y, Cho H. Met Mater Int, 2004; 10: 513
[18] Zhou M Z. PhD Dissertation, Central South University, Changsha, 2010
[18] (周明哲. 中南大学博士学位论文, 长沙, 2010)
[19] Dvydov V G, Rostova T D, Zakharov V V, Filatov Y A, Yelagin V I. Mater Sci Eng, 2000; A280: 30
[20] Watanabe C, Jin C Y, Monzen R, Kitagawa K. Mater Sci Eng, 2004; A387-389: 552
[21] Lados D A, Apelian D. Mater Sci Eng, 2004; A385: 200
[22] Lee F T, Major J F, amuel F H. Metall Mater Trans, 1995; 26A: 1553
[23] Li M J, Hu H Y, Xing X S. Acta Phys Sin, 2003; 52: 2092
[23] (李眉娟, 胡海云, 邢修三. 物理学报, 2003; 52: 2092 )
[24] Yin Z M, Pan Q L, Zhang Y H, Jiang F. Mater Sci Eng, 2000; A280: 151
[25] Saisrinadh K V, Singh V. Metall Mater Trans, 2007; 38A: 1868
[26] Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952
[26] (陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[27] Singh V, Sundararaman M, Chen W, Wahi R P. Metall Trans, 1991; 22A: 499
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[3] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[5] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[6] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[9] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[10] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[11] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[12] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[13] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[14] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[15] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.