Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1039-1045    DOI: 10.11900/0412.1961.2013.00835
  本期目录 | 过刊浏览 |
工艺参数对电磁冷坩埚定向凝固Nb-Si基合金固液界面的影响
燕云程1,2, 丁宏升1(), 宋尽霞2, 康永旺2, 陈瑞润1, 郭景杰1
1 哈尔滨工业大学金属精密热加工国家级重点实验室, 哈尔滨 150001
2 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION
YAN Yuncheng1,2, DING Hongsheng1(), SONG Jinxia2, KANG Yongwang2, CHEN Ruirun1, GUO Jingjie1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

燕云程, 丁宏升, 宋尽霞, 康永旺, 陈瑞润, 郭景杰. 工艺参数对电磁冷坩埚定向凝固Nb-Si基合金固液界面的影响[J]. 金属学报, 2014, 50(9): 1039-1045.
Yuncheng YAN, Hongsheng DING, Jinxia SONG, Yongwang KANG, Ruirun CHEN, Jingjie GUO. EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION[J]. Acta Metall Sin, 2014, 50(9): 1039-1045.

全文: PDF(1966 KB)   HTML
摘要: 

采用电磁冷坩埚定向凝固技术研究了加热功率、抽拉速率和保温时间对Nb-22Ti-16Si-3Cr-3Al-2Hf (原子分数, %)合金固液界面的影响. 采用正交实验制备合金试样. 结果表明, 延长保温时间、减小抽拉速率和提高加热功率有利于保持固液界面的宏观形态为平界面. 随着抽拉速率的增加, 初生Nb固溶体(Nbss)一次枝晶臂间距和二次枝晶臂间距逐渐减小; 随着加热功率的增加, 初生Nbss一次枝晶臂间距和二次枝晶臂间距逐渐增加; 随着保温时间的延长, 初生Nbss一次枝晶臂间距和二次枝晶臂间距先增大后减小. 增大抽拉速率、减小加热功率和缩短保温时间有利于一次枝晶臂间距和二次枝晶臂间距的细化.

关键词 电磁冷坩埚定向凝固失稳度固液界面工艺参数一次枝晶臂间距二次枝晶臂间距    
Abstract

Nb-Si base alloys have attracted considerable attentions as the potential high temperature structural materials working in the service temperature range of 1200~1400 ℃ because of their high melting points (>1750 ℃), moderate densities (6.6~7.2 g/cm3) and excellent high temperature strength. However, the mismatching between room temperature fracture toughness and high temperature strength has limited their practical applications. Directional solidification (DS) and alloying have been proved to be the effective methods to overcome this critical issue. The DS processes used to prepare Nb-Si base alloys included Czochralski directional solidification in a copper crucible, electron beam directional solidification, optical floating zone melting, integrally directional solidification and electromagnetic cold crucible directional solidification (ECCDS). The previous studies focused on the effect of process parameters on microstructure and mechanical properties in the steady-state growth region (SSGR). However, the microstructure in the SSGR was controlled by the solid-liquid interface, and the solid-liquid interface was controlled by process parameters. Therefore, the study about the effect of process parameters on solid-liquid interface was very important. In this work, the master alloy with the nominal composition of Nb-22Ti-16Si-3Cr-3Al-2Hf (atomic fraction, %) was prepared by vaccum non-consumable arc-melting first, and then induction skull melting. The DS experiments were performed in the ECCDS device equipped with a square water cooled copper crucible (internal dimension: 26 mm×26 mm×120 mm) and a Ga-In alloy pool. There were three processing parameters in ECCDS including heating power of power supply, withdrawal rate and holding time. The DS ingots were prepared according to the orthogonal test (L9 (33)). Instability degree was defined as the ratio of the height of solid-liquid interface to the width of the DS ingot. The results showed that there were three macroscopic morphologies of solid-liquid interfaces; the increase of holding time, decrease of withdrawal rate and elevation of heating power were conducive to keeping the solid-liquid interface macroscopic morphology planar. With the increase of withdrawal rate, primary dendrite arm spacing (d1) and secondary dendrite arm spacing (d2) decreased gradually; with the increase of heating power, d1 and d2 increased gradually; with the increase of holding time, d1 and d2 increased first and then decreased. The higher withdrawal rate, lower heating power and less holding time were beneficial to refining the d1 and d2.

Key wordselectromagnetic cold crucible directional solidification    instability degree    solid-liquid interface    processing parameter    primary dendrite arm spacing    secondary dendrite arm spacing
收稿日期: 2013-12-24     
ZTFLH:  TB331  
基金资助:* 国家自然科学基金项目51171053和航空科学基金项目20135377020资助
作者简介: null

燕云程, 男, 1983年生, 博士生

Level Heating power P / kW Withdrawal rate v / (mm·min-1) Holding time t / min
1 45 0.4 3
2 50 0.8 6
3 55 1.4 9
表1  正交实验水平因素表L9 (33)
Specimen P v t Di d1 d2
Oex-1 1 1 1 0.143 51.43 13.82
Oex-2 1 2 2 0.231 46.78 13.19
Oex-3 1 3 3 0.152 29.60 6.69
Oex-4 2 1 2 0.070 84.65 18.32
Oex-5 2 2 3 0.066 53.75 13.64
Oex-6 2 3 1 0.291 42.57 7.79
Oex-7 3 1 3 0.108 93.68 24.03
Oex-8 3 2 1 0.129 59.71 16.92
Oex-9 3 3 2 0.099 49.49 14.71
表2  正交实验表及测量结果
图1  3种固液界面宏观形态的OM像
图2  固液界面失稳度趋势图
Level / range P v t
k1 0.175 0.107 0.188
k2 0.142 0.142 0.133
k3 0.112 0.181 0.109
Range 0.063 0.074 0.079
表3  失稳度Di的直观分析
图3  Oex-4试样的固液界面微观形态的OM像
图4  固液界面初生Nbss一次枝晶臂间距趋势图
Level / range P v t
u1 42.60 76.59 51.24
u2 60.32 53.41 60.31
u3 67.63 40.55 59.01
Range 25.02 36.03 9.07
表4  固液界面初生Nbss的d1的直观分析
Level / range P v t
w1 11.23 18.72 12.84
w2 13.25 14.58 15.41
w3 18.55 9.73 14.79
Range 7.32 8.99 2.56
表 5  固液界面初生Nbss的d2的直观分析
图5  固液界面初生Nbss二次枝晶臂间距趋势图
图6  电磁冷坩埚定向凝固侧向传热示意图
[1] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J. MRS Bull, 2003; 28: 646
[2] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043
[3] Subramanian P, Mendiratta M, Dimiduk D. JOM, 1996; 48: 33
[4] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[5] Mendiratta M G, Lewandowski J J, Dimiduk D M. Metall Trans, 1991; 22: 1573
[6] Li Y L, Ma C L, Zhang H, Miura S. Mater Sci Eng, 2011; A528: 5772
[7] Tian Y X, Guo J T, Cheng G M, Sheng L Y, Zhou L Z, He L L, Ye H Q. Mater Des, 2009; 30: 2274
[8] Sekido N, Kimura Y, Miura S, Wei F G, Mishima Y. J Alloys Compd, 2006; 425: 223
[9] Sha J B, Hirai H, Tabaru T, Kitahara A, Ueno H, Hanada S. Metall Mater Trans, 2003; 34A: 85
[10] Bewlay B P, Jackson M R, Lipsitt H A. J Phase Equilib, 1997; 18: 264
[11] Guan P, Guo X P, Ding X, Zhang J, Gao L, Kusabiraki K. Acta Metall Sin (Engl Lett), 2004; 17: 450
[12] Guo X P, Gao L M. J Aeron Mater, 2006; 26(3): 47
[12] (郭喜平, 高丽梅. 航空材料学报, 2006; 26(3): 47)
[13] Kang Y W. PhD Dissertation, Beijing Institute of Aeronautical Materials, 2008
[13] (康永旺. 北京航空材料研究院博士学位论文, 2008)
[14] Wu M L, Wang Y Y, Li S S, Jiang L W, Han Y F. Int J Mod Phys, 2010; 24B: 2964
[15] Kim W Y, Tanaka H, Kasama A, Hanada S. Intermetallics, 2001; 9: 827
[16] Sekito Y, Miura S, Ohkubo K, Mohri T, Sakaguchi N, Watanabe S, Kimura Y, Mishima Y. Mater Res Soc Symp Proc, 2009; 1128: 38
[17] Guo H S, Guo X P. Scr Mater, 2011; 64: 637
[18] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579
[18] (姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[19] He Y S, Guo X P, Guo H S, Sun Z P. Acta Metall Sin, 2009; 45: 1035
[19] (何永胜, 郭喜平, 郭海生, 孙志平. 金属学报, 2009; 45: 1035)
[20] Wang Y, Guo X P. Acta Metall Sin, 2010; 46: 506
[20] (王 勇, 郭喜平. 金属学报, 2010; 46: 506)
[21] Yan Y C, Ding H S, Kang Y W, Song J X. Mater Des, 2014; 55: 450
[22] Yan Y C, Ding H S, Song J X. Proc Eng, 2012; 27: 1033
[23] Nie G, Ding H S, Chen R R, Guo J J, Fu H Z. Mater Des, 2012; 39: 350
[24] Ding H S, Nie G, Chen R R, Guo J J, Fu H Z. Mater Des, 2012; 41: 108
[25] Li Y Y,Hu C R. Experiment Design and Data Processing. 2nd Ed., Beijing: Chemical Industry Press, 2008: 124
[25] (李云雁,胡传荣. 试验设计与数据处理. 第二版, 北京: 化学工业出版社, 2008: 124)
[26] Wang Y L, Guo J J, Fu H Z. J Harbin Inst Technol, 2008; 40: 1808
[26] (王艳丽, 郭景杰, 傅恒志. 哈尔滨工业大学学报, 2008; 40: 1808)
[27] Zhou Y H,Hu Z Q,Jie W Q. Solidification Technology. Beijing: Machinery Industry Press, 1998: 155
[27] (周尧和,胡壮麒,介万齐. 凝固技术. 北京: 机械工业出版社, 1998: 155)
[28] Hu H Q. Metal Solidification Principle. 2nd Ed., Beijing: Machinery Industry Press, 2007: 108
[28] (胡汉起. 金属凝固原理. 第二版, 北京: 机械工业出版社, 2007: 108)
[1] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[2] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[3] 王海锋,苏海军,张军,黄太文,刘林,傅恒志. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*[J]. 金属学报, 2016, 52(4): 419-425.
[4] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[5] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[6] 许小静 林鑫 黄卫东 王亮. 激光立体成形Ti-80%Ni合金显微组织及力学性能[J]. 金属学报, 2010, 46(9): 1081-1085.
[7] 顾冬冬 沈以赴. 微/纳米Cu-W粉末激光烧结体的显微组织[J]. 金属学报, 2009, 45(1): 113-118.
[8] 许小静; 林鑫; 杨模聪; 陈静; 黄卫东 . 激光立体成形Ti-20%Ni合金枝晶的组织演化[J]. 金属学报, 2008, 44(8): 1013-1018 .
[9] 赵龙志; 曹小明; 田冲; 胡宛平; 张劲松 . 挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织[J]. 金属学报, 2006, 42(3): 325-330 .
[10] 徐海卫; 杨王玥; 孙祖庆 . 基于动态相变的细晶双相低碳钢组织控制[J]. 金属学报, 2006, 42(10): 1101-1108 .
[11] 李辉平; 赵国群; 牛山廷; 栾贻国 . 响应曲面法优化气体淬火过程中的工艺参数[J]. 金属学报, 2005, 41(10): 1095-1100 .
[12] 王玉庆;唐凤军;郑久红;周本濂. C_F/Al复合材料界面质量控制研究[J]. 金属学报, 1995, 31(14): 86-90.