Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 839-844    DOI: 10.3724/SP.J.1037.2013.00745
  本期目录 | 过刊浏览 |
一种细晶铸造镍基高温合金的组织与力学性能*
杨金侠(), 孙元, 金涛, 孙晓峰, 胡壮麒
中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS
YANG Jinxia(), SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
Jinxia YANG, Yuan SUN, Tao JIN, Xiaofeng SUN, Zhuangqi HU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS[J]. Acta Metall Sin, 2014, 50(7): 839-844.

全文: PDF(7395 KB)   HTML
摘要: 

通过传统铸造方法和细晶铸造工艺制备一种铸造镍基高温合金的6种不同形态与尺寸的晶粒. 结果表明, 细晶铸造工艺制备的样品心部为0.5 mm左右的等轴晶, 外部为柱状晶. 相比传统铸造方法, 细晶铸造工艺获得的晶粒较为细小. γ'相和 碳化物随晶粒尺寸减小而变得细小. 室温拉伸性能和550 ℃下高周疲劳性能随晶粒尺寸降低而提高; 在760 ℃和应力662 MPa条件下, 合金的持久性能随晶粒尺寸减小而增加; 但在982 ℃和应力186 MPa条件下, 合金的持久性能随之降低. 细化晶粒提高了合金的中、低温力学性能, 但对其高温力学性能不利.

关键词 镍基高温合金细化剂持久性能高周疲劳性能    
Abstract

A new Ni-based superalloy with the refined grains is to be used in industrial and aircraft turbines because of its high strength and excellent fatigue resistance at lower and medium temperatures (500~800 ℃). The grains with six different sizes have been made by decreasing the pouring temperature from 1460 to 1480 ℃ then 1500 ℃ and adding refiner to alloy and planting seed on the surface of mold. The size of equiaxed crystal grain is reduced to 0.5 mm in the center part of specimen with the columnar crystals in the outside of specimen made by the refining process which is finer than those of traditional process. It has been found that γ' phase and carbide are finer in refined grains than those in the coarse grains made by decreasing the pouring temperature. The room-temperature tensile properties and high cycle fatigue properties of tested alloy are improved with decreasing grain size. The stress-rupture properties are increased under the conditions of 760 ℃ and 662 MPa while are decreased with decreasing the grain size. The grain structure and size are refined by the refining process that dominated the excellent mechanical properties of tested alloy at lower and medium temperatures. However, it is not good for the mechanical properties at high temperatures.

Key wordsNi-based superalloy    refiner    stress-rupture property    high cycle fatigue property
收稿日期: 2013-11-19     
ZTFLH:  TG146  
基金资助:

*国家重点基础研究发展计划项目2010CB631200和2010CB631206资助

作者简介: null

杨金侠, 女, 1970年生, 副研究员, 博士

图1  不同铸造工艺下实验合金的晶粒组织
图2  不同铸造工艺条件下实验合金中γ'相的形貌
Condition σb / MPa σs / MPa δ / %
Rg1 1071.2 952.6 5.50
Rg3 1080.2 960.4 6.00
Rf1 1135.5 996.9 6.50
Rf2 1143.3 990.6 7.43
表1  实验合金的室温拉伸性能
图3  不同铸造工艺条件下实验合金中碳化物形貌
Condition τ / h δ / %
Rg1 51.6 5.63
Rg3 90.2 5.89
Rf1 126.8 7.30
Rf2 162.4 8.42
表2  在760 ℃和应力662 MPa时合金在不同条件的持久性能
Condition τ / h δ / %
Rg1 64.3 6.28
Rg3 58.2 7.14
Rf1 57.2 7.04
Rf2 50.1 7.20
表3  在982 ℃和应力186 MPa时合金在不同条件的持久性能
图4  不同晶粒状态下合金的高周疲劳强度极限与循环周次的关系曲线
[1] Ewing B A, Green K A. In: Gell M, Kortovin C S, Bricknell R H, Kent W B, Radavich J F eds., Superalloys, Champion: The Metallergical Society of AIME, 1984: 33
[2] McClean M. Mater Sci Technol, 1988; 4: 205
[3] Bouse G K, Behrend M R. In: Loria E ed., Mechanical Properties of Microcast-X Alloy 718 Fine Grain Investment Castings, Superalloy 718-Metallurgy and Applications, Warrendale, PA: The Metallurgical Society, 1989: 319
[4] Prichard P D, Dalal R P. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys, Champion: The Metallurgical Society of AIME, 1992: 205
[5] Liu L, Zhen B L, Banerlly A, Relf W. Scr Metall Mater, 1994; 30: 593
[6] Liu L, Huang T, Xiong Y, Yang A, Zhao Z, Zhang R, Li J. Mater Sci Eng, 2005; A394: 1
[7] Xiong Y, Yang A, Guo Y, Liu W, Liu L. Sci Technol Adv Mater, 2001; 2: 13
[8] Xiong Y H, Liu W, Yang A M, Zhang R, Liu L. Acta Metall Sin, 1999; 35: 689
[8] (熊玉华, 柳 伟, 杨爱民, 张 蓉, 刘 林. 金属学报, 1999; 35: 689)
[9] Ma Y, Sun J, Xie X, Hu Y, Zhao J, Yan P. J Mater Sci Technol, 2003; 137: 35
[10] Zhang B, Cui J, Liu G. Mater Sci Eng, 2003; A355: 325
[11] Paul P C, Nasar S A. Introduction of Electromagnetic Fields. New York: McGraw-Hill, 1987: 306
[12] Li T G, Cao Z Q, Jin J Z, Zhang Z F. Mater Trans, 2001; 42: 281
[13] Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z. Mater Sci Eng, 2002; A327: 133
[14] Zhou J, Xie F X, Wu X Q, Zhang J. Foundry, 2009; 58: 678
[14] (周俊, 谢发勤, 吴向清, 张军. 铸造, 2009; 58: 678)
[15] Zheng J B, Ding J, Guo Y P, Liu L, Liu W, Li X J. Acta Metall Sin, 1998; 34: 362
[15] (郑建邦, 丁 洁, 郭益平, 刘 林, 柳 伟, 李行建. 金属学报, 1998; 34: 362)
[16] Zhao H T, Shi C X. Acta Metall Sin, 1981; 17: 118
[16] (赵慧田, 师昌绪. 金属学报, 1981; 17: 118)
[17] EI-Bagoury N, Nofal A. Mater Sci Eng, 2010; A527: 7793
[18] Hu H Q. Principles of Metal Solidification. Beijing: Machinery Industry Press, 1991: 48
[18] (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 48)
[19] Herlach D M. Mater Sci Eng, 1994; R12: 177
[20] Peng Z F. Acta Metall Sin, 2002; 23: 135
[20] (彭志方. 金属学报, 2002; 23: 135)
[21] Yin F S. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2003
[21] (殷凤仕. 中国科学院金属研究所博士学位论文, 沈阳, 2003)
[22] Jin W Z, Li J, Li T J, Yin G M. Rare Met Mater Eng, 2008; 37: 1012
[22] (金文中, 李 军, 李廷举, 殷国茂. 稀有金属材料与工程, 2008; 37: 1012)
[23] Qiu H, Qian H C, Samir H A, Wu S M. Foundry Technol, 2004; 25: 265
[23] (邱 华, 钱翰城, Samir H A, 吴仕明. 铸造技术, 2004; 25: 265)
[24] Nilsson J O, Thorvaldsson T. Fatigue Fract Eng Mater Struct, 1985; 8: 4
[25] Leverant G R. Trans Metall Soc AIME, 1969: 245
[26] Liu F X, Yuan W M, Tang X, Yang A D. Acta Metall Sin, 1995; 31(Suppl): S739
[26] (刘发信, 袁文明, 汤 鑫, 杨爱德. 金属学报, 1995; 31(增刊): S739)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[12] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[13] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[14] 郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
[15] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.