Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1590-1596    DOI: 10.3724/SP.J.1037.2013.00315
  论文 本期目录 | 过刊浏览 |
X65和X80管线钢在高pH值溶液中的应力腐蚀开裂行为及机理
朱敏,刘智勇,杜翠薇,李晓刚,李建宽,李琼,贾静焕
北京科技大学材料科学与工程学院, 北京 100083
STRESS CORROSION CRACKING BEHAVIOR AND MECHANISM OF X65 AND X80 PIPELINE STEELS IN HIGH pH SOLUTION
ZHU Min, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LI Jiankuan, LI Qiong, JIA Jinghuan
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

朱敏,刘智勇,杜翠薇,李晓刚,李建宽,李琼,贾静焕. X65和X80管线钢在高pH值溶液中的应力腐蚀开裂行为及机理[J]. 金属学报, 2013, 49(12): 1590-1596.
ZHU Min, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LI Jiankuan, LI Qiong, JIA Jinghuan. STRESS CORROSION CRACKING BEHAVIOR AND MECHANISM OF X65 AND X80 PIPELINE STEELS IN HIGH pH SOLUTION[J]. Acta Metall Sin, 2013, 49(12): 1590-1596.

全文: PDF(2785 KB)  
摘要: 

采用电化学测试和慢应变速率拉伸实验(SSRT)研究了X65和X80管线钢在高pH值溶液中的应力腐蚀开裂(SCC)行为及机理.结果表明, X65钢在高pH值溶液中的开裂方式是沿晶断裂(IGSCC);X80钢在高pH值溶液中的开裂方式是初期裂纹沿晶扩展与后期裂纹穿晶扩展断裂的混合模式,主要表现为穿晶断裂(TGSCC)特征. X80钢在高pH值溶液中的断裂方式与其组织及强度有关,其裂尖pH值降低是发生TGSCC的重要原因.X65钢在高pH值溶液中的SCC机理为阳极溶解(AD)机理; 而X80钢为阳极溶解(AD)+氢脆(HE)机理.

关键词 管线钢应力腐蚀开裂pH值溶液    
Abstract

X80 pipeline steel is a low carbon, micro—alloyed high—grade steel and a fairly new steel used as pipeline material in worldwide. The material has the huge potential to be used widely for building the oil/gas transmission pipelines in the 21st century because of its high intensity and high toughness. X80 steel has been adopted on the second west—east gas transmission pipeline project in China. Whereas, there is a issue, stress corrosion cracking (SCC) is more likely to occur on X80 pipeline steel, because of its high strength and fine microstructure, it will be a vital threat to safe operation of buried oil/gas pipelines. However, the related research about SCC behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution is rarely reported at present. Comparing with X65 pipeline steel, X80 steel has higher strength and finer microstructure, because of these differences, it may have some certain influence on the SCC behavior of X80 steel, and even change the mechanism of high pH SCC. Consequently, it is necessary to study the SCC behavior and mechanism of X80 steel in high pH solution. In this work, the SCC behavior and mechanism of X65 and X80 pipeline steels in high pH concentrated carbonate/bicarbonate solution are investigated by slow strain rate testing (SSRT), electrochemical test and surface analysis technique. The results show that the cracking mode of X65 pipeline steel in carbonate/bicarbonate solution is intergranular SCC (IGSCC). While the mixed cracking mode of X80 pipeline steel in high pH solution is that the crack is intergranular in the early stage of the crack propagation, and transgranular SCC (TGSCC) in the later stage, which is mainly transgranular. The cracking mode of X80 steel is associated with the microstructure and high strength of the steel. The key reason for TGSCC occurring of X80 steel is that the decrease of pH value of the crack tip during the crack propagation process. The SCC mechanism of X65 steel in high pH carbonate/bicarbonate solution is anodic dissolution (AD) mechanism. While the SCC mechanism of X80 steel in high pH solution is mixed controlled by both AD and hydrogen embrittlement (HE) mechanisms, and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The high strength X80 steel consisted of fine acicular ferrite and granular bainite has a higher susceptibility to SCC in high pH solution, comparing with low strength X65 steel composed of ferrite and pearlite.

Key wordspipeline steel    stress corrosion cracking    high pH solution
收稿日期: 2013-06-08     
基金资助:

国家自然科学基金项目51131001和国家高技术研究发展计划项目2012AA040105资助

作者简介: 朱敏, 男, 1985年生, 博士生

[1] Zhang G A, Cheng Y F.  Corros Sci, 2010; 52: 960

[2] Mustapha A, Charles E A, Hardie D.   Corros Sci, 2012; 54: 5
[3] Oskuie A A, Shahrabi T, Shahriari A, Saebnoori E.  Corros Sci, 2012; 61: 111
[4] Arafin M A, Szpunar J A.  Mater Sci Eng, 2011; A528: 4927
[5] Kang Y W, Chen W X, Kania R, Boven G V, Worthingham R.  Corros Sci, 2011; 53: 968
[6] Lu B T, Luo J L, Norton P R.  Corros Sci, 2010; 52: 1787
[7] Sadeghi Meresht E, Shahrabi Farahani T, Neshati J.  Eng Fail Anal, 2011; 18: 963
[8] Jack T R, Erno B, Krist K.  Corrosion, 2000; 362: 10
[9] Manfredi C, Otegui J L.  Eng Fail Anal, 2002; 9: 495
[10] Arafin M A, Szpunar J A.  Corros Sci, 2009; 51: 119
[11] Gonzalez—Rodriguez J G, Casales M, Salinas—Bravo V M, Albarran J L,
Martinez L.  Corrosion, 2002; 58: 584
[12] He D X, Chen W, Luo J L.  Corrosion, 2004; 60: 778
[13] Parkins R N, Blanchard Jr W K, Delanty B S.  Corrosion, 1994; 50: 394
[14] Park J J, Pyun S I, Na K H, Lee S M, Kho Y T.  Corrosion, 2002; 58: 329
[15] Parkins R N.  Corrosion, 1987; 43: 130
[16] Lu B T, Song F M, Gao M, Elboujdaini M.  Corros Sci, 2010; 52: 4064
[17] Li M C, Cheng Y F.  Electrochim Acta, 2008; 53: 2831
[18] Song F M.  Corros Sci, 2009; 51: 2657
[19] Wang J Q, Atrens A, Cousens D R, Kelly P M, Nockolds C, Bulcock S.Acta Mater, 1998; 46: 5677
[20] Wang J Q, Atrens A, Cousens D R, Kinaev N.  J Mater Sci, 1999; 34: 1721
[21] Wang J Q, Atrens A, Cousens D R, Nockolds C, Bulcock S.  J Mater Sci, 1999; 34: 1711
[22] Atrens A, Wang J Q, Stiller K, Andren H O.  Corros Sci, 2006; 48: 79
[23] Liang P.  PhD Dissertation, University of Science and Technology Beijing, 2008
(梁平. 北京科技大学博士学位论文, 2008)
[24] Lu B T, Luo J L.  Corrosion, 2006; 62: 129
[25] Xu C C, Chi L, Hu G, Huang J, Wang Z S.  J Chin Soc Corros Prot, 2005; 25: 20
(许淳淳, 池琳, 胡钢, 黄杰, 王紫色. 中国腐蚀与防护学报, 2005; 25: 20)
[26] Fang B Y, Wang J Q, Zhu Z Y, Han E H, Ke W.  Acta Metall Sin, 2001; 37: 453
(方丙炎, 王俭秋, 朱自勇, 韩恩厚, 柯伟. 金属学报, 2001; 37: 453)
[27] Wang Z F, Atrens A.  Metall Mater Trans, 1996; 27A: 2686
[28] Parkins R N.  Corrosion, 1996; 52: 363
[29] Rebak R B, Xia Z, Safruddin R, Szklarska—Smialowska Z.  Corrosion, 1996; 52: 396
[30] Li J, Elboujdaini M, Fang B, Revie R W, Phaneuf M W.  Corrosion, 2006; 62: 316
[31] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N.  Corros Sci, 2008; 50: 625
[32] Hoffmeister H.  Corrosion, 2011; 67: 1
[33] Ateya B G, Pickering H W.  Corros Sci, 1995; 37: 1443
[34] Chen W, King F, Vokes E.  Corrosion, 2002; 58: 267
[35] Guo H, Li G F, Cai X, Yang W.  Acta Metall Sin, 2004; 40: 967
(郭浩, 李光福, 蔡珣, 杨武. 金属学报, 2004; 40: 967)
[36] Dmytrakh I M.Strain, 2011; 47: 427
[37] Tang X, Cheng Y F.Corros Sci, 2011; 53: 2927
[38] Wang Z F, Atrens A.Metall Mater Trans, 1996; 27A: 2686
[39] Wang J Q, Atrens A.Corros Sci, 2003; 45: 2199
[40] Asahi H, Kushida T, Kimura M, Fukai H, Okano S.  Corrosion, 1999; 55: 644
[41] Dong C F, Li X G, Liu Z Y, Zhang Y R.  J Alloys Compd, 2009; 48: 966
[42] Kwster F, Bohnenkamq K, Engell H J.  Werkstoffe Korrosion, 1978; 29: 699
[43] Wang W, Shan Y, Yang K.  Mater Sci Eng, 2009; A502: 38
[44] Ogundele G I, White W E.  Corrosion, 1986; 42: 71
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[5] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[6] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[7] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[8] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[9] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[12] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[13] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[14] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[15] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.