Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1116-1122    DOI: 10.3724/SP.J.1037.2012.00081
  论文 本期目录 | 过刊浏览 |
Ti-6Al-4V激光冲击强化及其微结构响应分析
罗新民1), 赵广志1), 张永康2), 陈康敏1, 3), 罗开玉2), 任旭东2)
1) 江苏大学材料科学与工程学院, 镇江 212013
2) 江苏大学机械工程学院, 镇江 212013
3) 江苏大学分析测试中心, 镇江 212013
LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE
LUO Xinmin1), ZHAO Guangzhi1),  ZHANG Yongkang2), CHEN Kangmin1, 3),  LUO Kaiyu2), REN Xudong2)
1) School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013
2) School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
3) Analysis and Test Center, Jiangsu University, Zhenjiang 212013
引用本文:

罗新民 赵广志 张永康 陈康敏 罗开玉 任旭东. Ti-6Al-4V激光冲击强化及其微结构响应分析[J]. 金属学报, 2012, 48(9): 1116-1122.
, , , , , , , . LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE[J]. Acta Metall Sin, 2012, 48(9): 1116-1122.

全文: PDF(5751 KB)  
摘要: 使用Nd3+∶YAG脉冲激光器产生的脉冲能量为12.5 J, 频率10 Hz, 波长1064 nm的脉冲激光研究了强激光冲击下的Ti-6Al-4V合金表面响应, 用SEM和TEM及IFFT方法分析了激光冲击强化造成的微结构响应. 结果表明, 激光冲击可使Ti-6Al-4V合金表面硬度增加80%以上, 残余压应力达到500 MPa以上. 在激光冲击产生的超高能量和超高应变率作用下, 具有α/β两相结构的Ti-6Al-4V合金的激光冲击强化效应表现出明显的择优倾向, 在较低冲击能量下, β相优先获得形变强化; 在较高的冲击能量下, αβ相才能同时获得相当的形变强化, 且优先强化相出现过饱和强化现象. 位错增殖是冲击强化的主要微观机制, 增殖形式多为定向发射和位错偶极子, αβ相则以半共格方式协调形变; 在冲击强化区域内呈现应变屏蔽现象, 其源于形变缺陷的自组织, 是材料在激光冲击形变时的微观约束条件和激光冲击单点累积形变方式以及α/β两相的相间强度与结构差异共同作用所致.
关键词 激光冲击材料响应钛合金表面强化微结构    
Abstract:Laser shock processing (LSP) is an effective and promising technology for improving surface mechanical properties of metals. The study of the strain behavior of individual phase of advanced engineering materials with polycrystalline and dual-phase microstructures subjected to laser shock processing is an important emerging frontier, which facilitates understanding of the relative roles of intrinsic and extrinsic attributes of microstructure upon strengthening, compared with the strengthening process of metals at the macroscopic scale of deformation. The influence of LSP on the surface layer properties and microstructures of a Ti-6Al-4V alloy has been investigated focusing on the microstructure response of the surface layer of the alloy by means of high efficient Nd3+∶YAG ceramic pulse laser with 12.5 J per pulse at 1064 nm and 10 Hz repetition rate. The microstructures response of the alloy are analyzed and characterized with by FE-SEM, TEM and the inverse fast fourier transform (IFFT) algorithm, respectively. The experimental results show that the surface hardness of the laser shocked Ti-6Al-4V alloy can increase 80%, and the compressive residual stress can be over\linebreak 500 MPa. Obvious preference effect between α and β phase is discovered upon strengthening of the alloy under the conditions of the ultra high energy and ultra-high strain rate of laser shock. With the lower shock energy, the deformation strengthening of β phase takes precedence over the other; as the shock energy increasing, both α and β are strengthened simultaneously, whereas, the previously strengthened β phase shows saturated strengthening effect. The results also reveal that dislocation multiplication is the main strengthen mechanism in the laser shocked region, including oriented dislocation projection and dislocation dipoles in the α phase with hcp crystal lattice, but diversified configurations, such as edge-dislocation, extended dislocations and dislocation dipoles presenting in the β phase with bcc crystal lattice. The semi-coherent interface with misfit dislocations between α and β phase boundary is discovered, which plays a synergetic role upon deformation strengthening. Additionally, the strain screening manifestation within the laser shocked region is also discussed, which is regarded as a kind of self-organization phenomenon of deformation defects, and can be attributed to the synthetic effect of the confinement conditions upon laser shocking, the accumulative strengthening mode of single-spot laser shocking process and the differences of strength and crystalline structure between the lamellar α and β phases.
Key wordslaser shock processing    material response    Ti-based alloy    surface strengthening    microstructure
收稿日期: 2012-02-17     
ZTFLH: 

TN249

 
基金资助:

国家自然科学基金项目50735001, 50905080和51105179资助

作者简介: 罗新民, 男, 1951年生, 教授
[1] Zhong M L, Fan P X. Chin J Lasers, 2011; 38: 0601001–1

(钟敏霖, 范培迅. 中国激光, 2011; 38: 0601001-1)

[2] Zhong M L, Liu W J. Chin J Lasers, 2008; 35: 1653

(钟敏霖, 刘文今. 中国激光, 2008; 35: 1653)

[3] Zhou J Z, Fan Y J, Huang S, Ruan H Y, Zhu W, Wei D H, Wang C D, Chen H S. Chin J Lasers, 2011; 38: 0601003–1

(周建忠, 樊玉杰, 黄 舒, 阮鸿雁, 朱 伟, 卫登辉, 王呈栋, 陈寒松. 中国激光, 2011; 38: 0601003-1)

[4] Huang Y G, Liu S B. Chin J Lasers, 2009; 36: 3133

(黄永光, 刘世炳. 中国激光, 2009; 36: 3133)

[5] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y. Acta Optica Sin, 2011; 31: 714002–1

(罗新民, 张静文, 马辉, 张永康, 陈康敏, 任旭东, 罗开玉. 光学学报, 2011; 31: 714002-1)

[6] Xu H Y, Zou S K, Che Z G, Cao Z W. Chin J Lasers, 2011; 38: 0303002–1

(许海鹰, 邹世坤, 车志刚, 曹子文. 中国激光, 2011; 38: 0303002--)

[7] Zhang Y K, Zhou L C, Ren X D. J Jiangsu Univ (Nat Sci Ed), 2009; 30(1): 10

(张永康, 周立春, 任旭东. 江苏大学学报(自然科学版), 2009; 30(1): 10)

[8] Trdan U, Grum J, Hill M R. Mater Sci Forum, 2011; 681: 480

[9] Zou S K, Gong S L, Guo E M, Li B. Chin J Lasers, 2011; 38: 0601009–1

(邹世坤, 巩水利, 郭恩明, 李斌. 中国激光, 2011; 38: 0601009-1)

[10] Ren X D, Zhang Y K, Zhou J Z, Ma Z. J Huazhong Univ Sci Technol (Nat Sci Ed), 2007; 35(3): 150

(任旭东, 张永康, 周建忠, 马壮. 华中科技大学学报(自然科学版), 2007; 35(3): 150)

[11] Hu Y X, Yao Z Q. Acta Metall Sin (Engl Lett), 2008; 21: 125

[12] Li P, Li S X, Wang Z G. Prog Mater Sci, 2011; 56: 328

[13] Zhang Y K, Pei X, Chen J F, Gu Y Y, Ren A G, You J. Acta Optica Sin, 2010; 30: 2613

(张永康, 裴旭, 陈菊芳, 顾永玉, 任爱国, 尤建. 光学学报, 2010; 30: 2613)

[14] Guo N G, Luo X M, Hua Y Q. Mater Rev, 2006; 20(6): 10

(郭乃国, 罗新民, 花银群. 材料导报, 2006; 20(6): 10)

[15] Zhang W, Sui M L, Zhou Y Z, He G H, Guo J D, Li D X. Acta Metall Sin, 2003; 39: 1009

(张伟, 隋曼龄, 周亦胄, 何冠虎, 郭敬东, 李斗星. 金属学报, 2003; 39: 1009)

[16] Luo X M, Zhang Y K, Chen K M, Ren X D. In: Slabe J M ed., Proc 8th Int Conf zIndustral Tools and Material Processing Technologies{, Ljubljana: Ljubljana University, 2011: 223

[17] Luo X M, Zhao G Z, Yuan C Z, Zhang Y K, Chen K M. In: BobWed., Proc ICMTMA 2011. Los Alamitos: IEEE Computer Society, 2011: 556

[18] Rozmus G M. Acta Phys Polonica, 2010; 117A: 808

[19] Christoph L, Manfred P. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim: WILEY– VCH Verlag GmbH & Co. KGaA, 2003: 1

[20] Tao C H, Liu Q Q, Cao C X, Zhang W F. Failure and Prevention of Aeronautical Titanium Alloy. Beijing: National Defense Industry Press, 2002: 11

(陶春虎, 刘庆瑔,曹春晓, 张卫方. 航空用钛合金的失效及其预防. 北京: 国防工业出版社, 2002: 11)

[21] Zou S K, Cao ZW, Liu F J. Chin J Lasers, 2007; 34(s1): 4

(邹世坤, 曹子文, 刘方军. 中国激光, 2007; 34(s1): 4)

[22] Zhang Y K, Ye Y X. Laser Optoelectronics Prog, 2009; (9): 32

(张永康, 叶云霞. 激光与光电子学进展, 2009; (9): 32)

[23] Gu Y Y, Zhang Y K, Zhang X Q, Shi J G. Acta Phys Sin. 2006; 55: 5885

(顾永玉, 张永康, 张兴权, 史建国. 物理学报, 2006; 55: 5885)

[24] Qu H, Liu W D, Liu Z L. Acta Metall Sin, 2006; 42: 374

(屈华, 刘伟东, 刘志林. 金属学报, 2006; 42: 374)

[25] Zhou Z M. Dislocation Configuration Evolution. Shenyang: Northeastern University Press, 2003: 60

(周志敏. 位错组态演化. 沈阳: 东北大学出版社, 2003: 60)

[26] Hu G X, Qian M G. Metallurgy. Shanghai: Shanghai Science and Technology Press, 1980: 63

(胡赓祥, 钱苗根. 金属学. 上海: 上海科学技术出版社, 1980: 63)

[27] Franek A, Kalus R, Kratochvil J. Philos Mag, 1991; 64A: 497

[28] L¨utjering G, Williams J C. Titanium. 2nd Ed., Heidelberg: Springer Verlag, 2007: 97

[29] Smallman R E, Ngan A H W. Physical Metallurgy and Advanced Materials. 7th Ed., Burlington: Elsevier Ltd. 2007: 92

[30] Luo X M, Ma H, Zhang J W, Zhang Y K. Mater Rev, 2010; 20(3): 11

(罗新民, 马辉, 张静文, 张永康. 材料导报, 2010; 20(3): 11)

[31] Shao J L, Qin C S, Wang P, Zhang G C, He A M. Acta Mech Solid Sin, 2009; 30: 226

(邵建立, 秦承森, 王裴, 张广财, 何安民. 固体力学学报, 2009; 30: 226)

[32] Luo G. Master thesis, Nanjing Aeronautic and Astronautic University, 2010

(罗刚. 南京航空航天大学硕士学位论文, 2010)
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[9] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[10] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[11] 张海天, 张湘义. 有序异构功能材料[J]. 金属学报, 2022, 58(11): 1459-1466.
[12] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[13] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[14] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[15] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.