Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 475-479    DOI: 10.3724/SP.J.1037.2011.00643
  论文 本期目录 | 过刊浏览 |
SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能
刘荣明1,2,岳明1,张东涛1,刘卫强1,张久兴1
1. 北京工业大学教育部新型功能材料实验室, 北京 100124
2. 中国科学院物理研究所磁学国家重点实验室, 北京 100190
PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES
LIU Rongming1,2, YUE Ming1, ZHANG Dongtao1,Liu Weiqiang1, ZHANG Jiuxing1
1. Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124
2. State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
引用本文:

刘荣明,岳明,张东涛,刘卫强,张久兴. SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能[J]. 金属学报, 2012, 48(4): 475-479.
, , , , . PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES[J]. Acta Metall Sin, 2012, 48(4): 475-479.

全文: PDF(662 KB)  
摘要: 采用表面活性剂增强高能球磨技术及颗粒清洗、分级筛选工艺, 制备了具有较高矫顽力、颗粒尺寸分布狭窄的SmCo5纳米颗粒与纳米薄片, 利用XRD, SEM, TEM, 激光粒径分析(LPSA)和振动样品磁强计(VSM)等手段分别对其相结构、微观形貌、颗粒尺寸分布及磁性能进行了表征. 结果表明, 平均颗粒尺寸分别为9.8和47.5 nm的SmCo5 纳米颗粒, 其室温矫顽力分别为6.8×10$4和7.3×105 A/m; SmCo5纳米薄片的平均颗粒尺寸为1.4 μm, 平均厚度为 75 nm, 具有明显的c轴织构和较强的磁各向异性, 其难磁化轴和易磁化轴上的室温矫顽力分别可达5.5×105和1.6× 106 A/m; SmCo5纳米颗粒和纳米薄片的矫顽力表现出显著的颗粒尺寸依赖性.
关键词 SmCo5纳米颗粒纳米薄片表面活性剂高能球磨磁性能    
Abstract:Surfactant-assisted high energy ball milling technique is a new method of producing magnetic nanoparticles. In this study, permanent magnetic SmCo5 nanoparticles and nanoflakes with high room-temperature coercivity values and narrow particle size distributions were produced by this technology and a subsequent size-selection process. The SmCo5 nanoparticles with average particle sizes of 9.8 and 47.5 nm, exhibited room-temperature coercivity values of 6.8×104 and 7.3×105 A/m, respectively, while the SmCo5 nanoflakes, with the mean particle size of about 1.4 μm and average thickness of 75 nm, showed excellent permanent magnetic properties with an obvious c-axis crystal texture, a strong magnetic anisotropy and high coercivity values of 5.5×105 and 1.6×106 A/m in their easy-axis and hard-axis directions, respectively. The coercivity values of SmCo5 nanoparticles and nanoflakes exhibited a significant particle size dependance effect.
Key wordsSmCo5    nanoparticle    nanoflake    surfactant    high energy ball milling    magnetic property
收稿日期: 2011-10-17     
ZTFLH: 

TM277

 
基金资助:

国家自然科学基金资助项目50871003

作者简介: 刘荣明, 男, 1982年生, 博士
[1] Chakka V M, Altuncevahir B, Jin Z Q, Li Y, Liu J P. J Appl Phys, 2006; 99: 08E912

[2] Wang Y P, Li Y, Rong C B, Liu J P.  Nanotechnology, 2007; 18: 465701

[3] Yue M, Wang Y P, Poudyal N, Rong C B.  J Appl Phys,2009; 105: 07A708

[4] Shen Y, Huang M Q, Higgins A K, Liu S, Horwath J C, Chen C H. J Appl Phys, 2010; 107: 09A722

[5] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  IEEE Trans Magn,2009; 45: 4417

[6] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  J Appl Phys,2009; 105: 07A710

[7] Cha H G, Kim Y H, Kim C W, Kwon H W, Kang Y S.  J Phys Chem,2007; C111: 1219

[8] Gabay A M, Akdogan N G, Marinescu M, Hadjipanayis G C. J Phys: Condens Matter, 2010; 22: 164213

[9] Cui B Z, Gabay A M, Li W F, Marinescu M, Liu J F, Hadjipanayis G C. J Appl Phys, 2010; 107: 09A721

[10] Zheng L Y, Cui B Z, Akdogan N G, Marinescu M, Hadjipanayis G C. J Alloy Compd, 2010; 504: 391

[11] Cui B Z, Li W F, Hadjipanayis G C.  Acta Mater,2011;59: 563

[12] Akdogan N G, Hadjipanayis G C, Sellmyer D J.  Nanotechnology,2010; 21: 295705

[13] Jones N.  Nature, 2011; 472: 22

[14] Li S X, Zhang J C, Shen Y, Ni B, Zhang J G.  J Mater Sci Technol, 2006; 22: 659

[15] Jian Z G, Liu W Q, Cao A L, Zhang D T, Yue M, Zhang J X. Chin J Rare Met, 2009; 33: 821

     (菅志刚, 刘卫强, 曹爱利, 张东涛, 岳明, 张久兴. 稀有金属, 2009; 33: 821)

[16] Liu S L,Yu Y Y, Teng R H, Xu J R.  Acta Metall Sin, 1998; 34: 1223

     (刘思林, 于英仪, 滕荣厚, 徐教仁. 金属学报, 1998; 34: 1223)

[17] Cao W M, Chen H, Shi X H, Zhu L J, Ji X B, Zhang L, Yin R H. Acta Metall Sin, 2008; 44: 445

     (曹为民, 陈浩, 石新红, 朱律均, 姬学彬, 张磊, 印仁和.金属学报, 2008; 44: 445)

[18] Liu X M, Fu S Y, Xiao H M, Li Y Q.  Acta Metall Sin, 2006; 42: 497

 (刘献明, 付绍云, 肖红梅, 李元庆. 金属学报, 2006; 42: 497)

[19] http://zjyqyb.cnpowder.com.cn/news/19378.html

[20] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X.  Appl Phys Lett,2011; 99: 162510

[21] Liu R M, Yue M, Liu W Q, Zhang D T, Zhang J X, Guo Z H, Li W. IEEE Trans Nanotechnol, doi: 10.1109/TNANO.2012.2184299

[22] Coey J M D.  J Magn Magn Mater, 1995; 140-144: 1041

[23] Ding J, Mc Cormick P G, Street R.  J Alloy Compd, 1993; 191: 197

[24] Strnat K J. In: Wehfarth E P, Buschow K H eds.,  Ferromagnetic Materials. Elsevier: Amsterdam, 1988; 4: 131

[25] Hadjipanayis G C.  J Magn Magn Mater, 1999; 200: 373
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 郭雨静, 鲍皓明, 符浩, 张洪文, 李文宏, 蔡伟平. 金属Rb纳米溶胶的超声乳化制备及点火特性[J]. 金属学报, 2022, 58(6): 792-798.
[4] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[5] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[6] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[7] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[8] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[9] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[10] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[11] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[12] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[13] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[14] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[15] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.