Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1290-1298    DOI: 10.3724/SP.J.1037.2012.00305
  论文 本期目录 | 过刊浏览 |
奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响
由洋, 王学敏, 尚成嘉
北京科技大学材料科学与工程学院, 北京 100083
INFLUENCE OF AUSTENITIZING TEMPERATURE ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A HIGH STRENGTH LOW ALLOY HSLA100 STEEL
YOU Yang, WANG Xuemin, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

由洋 王学敏 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J]. 金属学报, 2012, 48(11): 1290-1298.
YOU Yang WANG Xuemin SHANG Chengjia. INFLUENCE OF AUSTENITIZING TEMPERATURE ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A HIGH STRENGTH LOW ALLOY HSLA100 STEEL[J]. Acta Metall Sin, 2012, 48(11): 1290-1298.

全文: PDF(1262 KB)  
摘要: 

利用Gleeble-3500热模拟机研究了低冷速条件下奥氏体化温度对高强度低合金钢相变组织及-20℃冲击韧性的影响. 研究发现, 随着奥氏体化温度的升高, 显微组织由粒状贝氏体逐渐变为板条贝氏体. 奥氏体化温度为1000℃时冲击韧性最佳, 显微组织中马氏体/奥氏体(M/A)岛细小弥散且大角晶界密度最大. 低于1000℃奥氏体化时M/A岛粗化显著, 大角晶界密度较低; 而高于1000℃时, 虽然M/A岛细小弥散, 但是大角晶界密度有所下降. 动力学分析表明, 随着奥氏体化温度的升高, 相变起始温度逐渐下降, 转变速率不断加快, 较低的相变起始温度及较快的转变速率有利于M/A岛细化. 所有转变过程均可分为贝氏体转变及马氏体转变两个阶段, 1000℃奥氏体化时贝氏体转变分数最大, 转变最完全. 晶体学分析进一步显示, 当M/A岛得到细化时(奥氏体化温度1000℃及1300℃), 除原奥氏体晶界外, 更多大角晶界来源于发生协变相变时, 晶体学集合内不同Bain组之间的界面. 当奥氏体化温度过高时, 在粗大的奥氏体晶粒内部, 集合内的相变产物由单一Bain组主导, 从而导致大角晶界密度的降低及冲击韧性的下降.

关键词 HSLA100钢奥氏体晶粒大小相变韧性晶体学包    
Abstract

The effect of austenitizing temperature on the microstructures and -20 ℃ impact toughness of HSLA100 steel was investigated by Gleeble-3500 thermal simulator. Its microstructures were observed by SEM and EBSD, and the relevant transformation kinetics was also analyzed by means of dilatometer. The results show that the microstructure of HSLA100 steel changes gradually from granular to lath bainite with increasing austenitizing temperature. The highest impact toughness of samples was achieved at austenitizing temperature of 1000 ℃, in which martensite-austenite (M/A) islands are finer and dispersed and the density of high angle boundaries is maximum. M/A islands, however, become coarser and this density lowers below 1000 ℃, beyond 1000 ℃, these islands are refined, being accompanied by a dramatic decrease of this density of high angle boundaries. Kinetics analysis indicates that with increasing austenitizing temperature, the transformation start temperature decreases but the transformation rate increases. Both lower start temperature and faster rate would facilitate M/A islands refining. All the transformation occurring in samples might be divided into two stages: bainite and martensite stages. The highest transformed fraction of bainite is achieved in the bainite stage at about 1000 ℃, resulting in the best impact toughness of HSLA100 steel. The crystallographic analysis of the well refined M/A islands at 1000 ℃ and 1300 ℃ shows that major high angle boundaries occur prior at the boundaries between different Bain groups belong to the same crystallographic group set to at austenite boundaries when covariance transformation occurring. When over-increasing austenitizing temperature, the covariance transformation products in coarser austenite grains are dominated by only one Bain group belong to the crystallographic group set, leading to the density of high angle boundaries and thus the impact toughness of HSLA100 steel decreasing.

Key wordsHSLA100 steel    austenite grain size    phase transformation    toughness    crystallographic packet
收稿日期: 2012-05-25     
ZTFLH:  TG142  
基金资助:

国家重点基础研究发展计划项目2010CB630801和国家高技术研究发展计划项目 2008AA03Z501资助

作者简介: 由洋, 男, 1983年生, 博士生

[1] Hatano H, Kawano H, Okano S. Kobe Steel Technol Rep, 2004; 54(2): 105

[2] Amano K, Kawabata F, Kubo T. Kawasaki Steel Technol Rep, 1999; 41: 48

[3] Yao L D, Wang P Y, Wang W L. Wide Heavy Plate, 2002; (2): 7

(姚连登, 王培玉, 王文亮. 宽厚板, 2002; (2): 7)

[4] Suzuki S, Ichimiya K, Akita T. JFE Technol Rep, 2005; 5: 24

[5] Nie Y, Dong W L, Zhao Y T, Shang C J, Hou H X, He X L. J Univ Sci Technol Beijing, 2006; 28: 8

(聂燚,  董文龙, 赵运堂, 尚成嘉, 侯华兴, 贺信莱. 北京科技大学学报, 2006; 28: 8)

[6] Shang C J, Yang S W, Wang X M, He X L, Liu Z Q, Chen Q P. J Univ Sci Technol Beijing, 2002; 24: 2

(尚成嘉, 杨善武, 王学敏, 贺信莱, 刘振清, 陈庆平. 北京科技大学学报, 2002; 24: 2)

[7] Otani K, Hattori K, Muraoka H, Kawazoe H, Tsuruta S. Nippon Steel Technol Rep, 1993; 58: 292

[8] Hase K, Hoshino T, Amano K. Kawasaki Steel Technol Rep, 2002; 47: 35

[9] Zhang W, Wu X C, Min Y A. Trans Mater Heat Treat, 2008; 29: 78

(张伟, 吴晓春, 闵永安. 材料热处理学报, 2008; 29: 78)

[10] Yang H S, Bhadeshia H K D H. Scr Mater, 2009; 60: 493

[11] Shang C J, Yang S W, Wang X M, Hou H X, Yu G L, Wang W Z. Iron Steel, 2005; 40(4): 57

(尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲. 钢铁, 2005; 40(4): 57)

[12] Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2003; 39: 1019

(尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)

[13] Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563

[14] Li Y and Baker T N. Mater Sci Technol, 2010; 26: 1029

[15] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[16] Sungtak L, Byung C K, Dongil K. Metall Mater Trans, 1993; 24A: 1133

[17] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[18] Lambert-Perlade A, Gourgues A F, Besson J, Sturel T, Pineau A. Metall Mater Trans, 2004; 35A: 1039

[19] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)

[20] Guo Z, Lee C S, Morris JW. Acta Mater, 2004; 52: 5511

[21] You Y, Shang C J, Chen L, Subramanian S. Mater Sci Eng, 2012; A546: 111

[22] Xu Z Y. Phase Change Principle. Beijing: Science Press, 2000: 412

(徐祖耀. 相变原理. 北京: 科学出版社, 2000: 412)

[23] Xu Z Y, Liu S K. Bainite Transformation and Bainite. Beijing: Science Press, 1991: 85

(徐祖耀, 刘世楷. 贝氏体相变与贝氏体. 北京: 科学出版社, 1991: 85)

[24] Chang L C. Mater Sci Eng, 2004; A368: 175

[25] Quidort D, Brchet Y. ISIJ Int, 2002; 42: 1010

[26] Jones S J, Bhadeshia H K D H. Acta Mater, 1997; 45: 2911

[27] Yu Y N. The Basis of Materials Science. Beijing: Higher Education Press, 2008: 34

(余永宁. 材料科学基础. 北京: 高等教育出版社, 2008: 34)

[28] Xu Z Q. Martensitic Transformation and Martensite. Beijing: Science Press, 1980: 41

(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 41)

[29] Hiromoto K, Rintaro U, Nobuhiro T, Yoritoshi M. Acta Mater, 2006; 54: 1279

[30] Pancholi V, Krishnan M, Samajdar I S, Yadav V, Ballal N B. Acta Mater, 2008; 56: 2037

[31] Furuhara T, Takayama N, Miyamoto G. Mater Sci Forum, 2010; 638: 3044


[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[12] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[15] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.