Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1299-1305    DOI: 10.3724/SP.J.1037.2012.00296
  论文 本期目录 | 过刊浏览 |
缆式焊丝CO2气体保护焊工艺研究
方臣富1), 陈志伟1), 胥国祥1), 胡庆贤1), 周航宇1), 时振2)
1) 江苏科技大学材料科学与工程学院, 镇江 212003
2) 江苏维特高科焊业有限公司, 淮安 223100
STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING
FANG Chenfu1), CHEN Zhiwei1), XU Guoxiang1), HU Qingxian1), ZHOU Hangyu2)
1)  School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
2) Jiangsu Victor Hi-tech Welding Industry Co. LTD, Huaian 223100
引用本文:

方臣富 陈志伟 胥国祥 胡庆贤 周航宇 时振. 缆式焊丝CO2气体保护焊工艺研究[J]. 金属学报, 2012, 48(11): 1299-1305.
FANG Chenfu CHEN Zhiwei XU Guoxiang HU Qingxian ZHOU Hangyu. STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING[J]. Acta Metall Sin, 2012, 48(11): 1299-1305.

全文: PDF(895 KB)  
摘要: 

采用缆式焊丝进行CO2气体保护焊,利用焊接电弧多信息采集系统拍摄了缆式焊丝CO2气体保护焊电弧形态图像;用数码相机拍摄无缺陷焊缝横截面照片. 基于实验结果分析了缆式焊丝CO2气体保护焊工艺机理. 建立了缆式焊丝 CO2气体保护焊有限元模型, 对该工艺下温度场、应力-应变场进行了数值模拟. 结果表明, 缆式焊丝CO2气体保护焊具有束状电弧, 其由多弧旋转耦合而成, 热流密度更为集中; 当缆式焊丝CO2气体保护焊单位长度焊缝的热输入为单焊丝CO2气体保护焊的2.9倍时, 其熔深与熔宽分别为单丝CO2气体保护焊的4倍和1.7倍; 在相同焊接条件下, 缆式焊丝CO2气体保护焊热效率与埋弧焊相近, 残余应力场分布与埋弧焊相似, 但熔深大于埋弧焊, 熔宽、热循环峰值温度、热影响区宽度均小于埋弧焊. 焊缝横断面的计算结果与实验结果吻合较好, 证明了所建热源模型的准确性.

关键词 高效焊接缆式焊丝气体保护焊工艺机理有限元分析    
Abstract

Cable-type welding wire (CTWW) CO2 gas shielded arc welding, which uses CTWW as consumable electrode, is an innovative arc welding process with high quality, high efficiency and low consumption, thus having significant potential of wide application in industrial manufacturing. So far, however, there is lack of deep study on this new welding technology, hindering its promotion. In this paper, the process mechanism of CTWW CO2 gas shielded arc welding is studied through combining the experimental detection and numerical simulation. By using arc multi-information collection system, the characteristics of arc shape and behavior in CTWW CO2 gas shielded arc welding process is acquired. The photographs of weld without defect are obtained. Based on the test results, the mechanism of CTWW COgas shielded arc welding is explained. A finite element analysis model suitable to CTWW CO2 gas shielded arc welding is developed to simulate the temperature and stress field distribution. The results show that, there exist a unique bunchy electric arc in CTWW CO2 gas shielded arc welding, which is formed through multi--arc rotating and coupling, leading to arc heat concentration; the calculated weld cross section agrees well with the experimental data, validating the accuracy of established heat source model. When the heat input for per unit length in CTWW CO2 gas shielded arc welding is 2.9 times more than that in single welding wire (SWW) CO2 gas shielded arc welding, the weld penetration and width are 4 times and 1.7 times of those in SWW CO2 gas shielded welding, respectively. Under the same welding condition, the new welding process has a similar heat efficiency to submerged arc welding (SAW), but its weld penetration is greater, and its weld width, heat-affected zone width and peak temperature of thermal cycle are smaller. Besides, the residual stress field in CTWW CO2 gas shielded arc welding is close to that in SAW.

Key wordshigh efficiency welding    CTWW    gas shielded arc welding    process mechanism    finite element analysis
收稿日期: 2012-05-22     
基金资助:

国家自然科学基金青年基金项目51105182和51005106资助

作者简介: 方臣富, 男, 1954年生, 教授

[1] Wu C S, Zhang M X, Li K H, Zhang Y M. Acta Metall Sin, 2007; 43: 663

(武传松, 张明贤, 李克海, 张裕明. 金属学报, 2007; 43: 663)

[2] Harwig D, Gordon R. Proc 6th Int Conf Trends in Welding Research, OH: ASM International, 2003: 995

[3] Guan Q, Lin S Y. Proc New Fusion Weld Technol Appl, Beijing: China Welding Society, 2003: 11

(关 桥, 林尚扬. 熔焊新技术及应用研讨会论文集, 北京: 中国焊接学会, 2003: 11)

[4] Lahnsteiner R. Weld Rev Int, 1992; 2: 17

[5] Knapp I, Bartosik M. Weld Rev Int, 1998; 12: 25

[6] Ma X L, Hua X M, Wu Y X. Weld Join, 2007; (7): 27

(马晓丽, 华学明, 吴毅雄. 焊接, 2007; (7): 27)

[7] Yin S Y. Weld Join, 2006; (10): 7

(殷树言. 焊接, 2006; (10): 7)

[8] Didling L A, Michael S, Ladwing B. Weld Cut, 2002; 5: 18

[9] Feng Y H, Jin Q, Wang J P, Gu M L. Trans China Weld Inst, 2009; 30(6): 51

(冯曰海, 金秋, 王克鸿, 顾民乐. 焊接学报, 2009; 30(6): 51)

[10] Xu G X. PhD Thesis, Shandong University, Jinan, 2009

(胥国祥. 山东大学博士学位论文, 济南, 2009)

[11] Li P L, Lu H. Trans China Weld Inst, 2011; 32(6): 13

(李培麟, 陆 皓. 焊接学报, 2011; 32(6): 13)

[12] Zhang P Y, Gao C R, Zhu F X. Weld Technol, 2009; 38(6): 23

(张朋彦, 高彩茹, 朱伏先. 焊接技术, 2009; 38(6): 23)

[13] Chen S J, Wang J, Wang H X, Lu Z Y, Yin S Y, Bai S J. Trans China Weld Inst, 2005; 26(3): 45

(陈树君, 王 军, 王会霞, 卢振洋, 殷树言, 白韶军. 焊接学报, 2005; 26(3): 45)

[14] Hua A B, Yin S Y, Chen S J, Bai S J, Zhang X L. Chin J Mech Eng, 2010; 46(16): 142

(华爱兵, 殷树言, 陈树君, 白韶军, 张晓亮. 机械工程学报, 2010; 46(16): 142)

[15] Lu Z Y, Huang P F, Jiang G J, Yin S Y. Weld Join, 2006; (3): 16

(卢振洋, 黄鹏飞, 蒋观军, 殷树言. 焊接, 2006; (3): 16)

[16] Zhou H Y. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(周航宇. 江苏科技大学硕士学位论文, 镇江, 2012)

[17] Hu X G. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(胡小光. 江苏科技大学硕士学位论文, 镇江, 2012)

[18] Wang H S. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012

(王海松. 江苏科技大学硕士学位论文, 镇江, 2012)

[19] Fang C F. PhD Thesis, Beijing University of Technology, 2005

(方臣富. 北京工业大学博士学位论文, 2005)

[20] Fang C F, Chen S J, Liu J, Yin S Y, Song Y L, Li H, Hou R S,Wen Y P. Trans China Weld Inst, 2005; 26(12): 1

(方臣富, 陈树君, 刘嘉, 殷树言, 宋永伦, 李桓, 侯润石, 温永平. 焊接学报, 2005; 26(12): 1)

[21] Fang C F, Ye Q L, Song Y L, Li H. Trans China Weld Inst, 2008; 29(4): 1

(方臣富, 叶轻凌, 宋永伦, 李桓. 焊接学报, 2008; 29(4): 1)

[22] Wu C S. Welding Thermal Process and Weld Pool Behaviour. Beijing: China Machine Press, 2007: 20

(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 20)

[23] Zhang M X. Master Thesis, Shandong University, Jinan, 2006

(张明贤. 山东大学硕士学位论文, 济南, 2006)

[24] Zhang M X, Wu C S, Li K H, Zhang Y M. Trans China Weld Inst, 2007; 28(2): 34

(张明贤, 武传松, 李克海, 张裕明. 焊接学报, 2007; 28(2): 34)

[25] Zhang W Y. Welding Metallurgy. Beijing: China Machine Press, 2002: 100

(张文钺. 焊接冶金学. 北京: 机械工业出版社, 2002: 100)

[1] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[2] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[3] 赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.
[4] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.
[5] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[6] 张姝 田素贵 于慧臣 苏勇 于兴福 于莉丽. [011]取向镍基单晶合金在拉伸蠕变期间的组织演化与有限元分析[J]. 金属学报, 2011, 47(1): 61-68.
[7] 郎文昌 肖金泉 宫骏 孙超 黄荣芳 闻立时. 轴对称磁场对电弧离子镀弧斑运动的影响[J]. 金属学报, 2010, 46(3): 372-379.
[8] 崔 航 陈怀宁 陈 静 黄春玲 吴昌忠. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189-194.
[9] 龚明明; 谭丽丽; 耿芳; 杨柯 . 新型多孔镁压缩性能的有限元分析[J]. 金属学报, 2008, 44(2): 237-242 .
[10] 姜锋; 赵娟; 蹇海根; 何振波; 雷学锋 . 焊后热处理对Al-Mg-Sc合金板材焊接接头组织与力学性能的影响[J]. 金属学报, 2008, 44(10): 1277-1280 .
[11] 徐娜; 宗亚平; 张芳; 左良 . SiCp/Al-2618复合材料的应力-应变曲线和增强颗粒受力的模拟[J]. 金属学报, 2007, 43(8): 863-867 .
[12] 武传松; 张明贤 . DE-GMAW高速电弧焊工艺机理的研究[J]. 金属学报, 2007, 43(6): 663-667 .
[13] 王后孝; 魏艳红; 孙俊生; 郑媛媛 . 基于串热源及CCT图的GMAW焊接热影响区组织及硬度预测[J]. 金属学报, 2005, 41(8): 839-846 .
[14] 张洪武; 张昭; 陈金涛 . 搅拌摩擦焊接过程中搅拌头转速对材料流动的影响[J]. 金属学报, 2005, 41(8): 853-859 .
[15] 丁向东; 刘刚; 王瑞红; 孙军; 江中浩; 连建设 . 颗粒增强金属基复合材料的屈服行为[J]. 金属学报, 2002, 38(4): 369-375 .