Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 81-87    DOI: 10.3724/SP.J.1037.2010.00470
  论文 本期目录 | 过刊浏览 |
磁场作用下Al-Pb偏晶合金的凝固过程
李海丽, 赵九洲
中国科学院金属研究所, 沈阳 110016
SOLIDIFICATION OF Al-Pb MONOTECTIC ALLOY UNDER A STATIC MAGNETIC FIELD
LI Haili, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李海丽 赵九洲. 磁场作用下Al-Pb偏晶合金的凝固过程[J]. 金属学报, 2011, 47(1): 81-87.
, . SOLIDIFICATION OF Al-Pb MONOTECTIC ALLOY UNDER A STATIC MAGNETIC FIELD[J]. Acta Metall Sin, 2011, 47(1): 81-87.

全文: PDF(1232 KB)  
摘要: 在恒定磁场作用下对Al-Pb合金进行定向凝固实验, 考察了合金成分、凝固速度、恒定磁场对凝固组织的影响. 模拟研究了恒定磁场作用下Al-Pb合金定向凝固组织的形成过程, 分析了磁场的影响机理和合金成分、凝固速度、磁场强度对弥散型凝固组织获得的影响. 模拟和实验均表明恒定磁场促进弥散型偏晶合金凝固组织的形成.
关键词 Al-Pb偏晶合金恒定磁场 凝固数值模拟液-液相变    
Abstract:A static magnetic field has great effect on the solidification structure of monotectic alloys, so the rapid directional solidification in a static magnetic field has great potentials in the manufacturing of monotectic alloys. But up to date little is known about the details of the effect of the magnetic field on the microstructure development during liquid-liquid decomposition. Directional solidification experiments with Al-Pb monotectic alloys in a static magnetic field were carried out, and the effects of the field intensity and the solidification velocity on the solidification microstructure were investigated. Samples with well-dispersed microstructure were obtained. A model was proposed to describe the microstructure evolution in a monotectic alloy solidified in a static magnetic field, which was verified by comparing with experimental results and then applied to investigate the microstructure formation in the unidirectionally solidified Al-Pb alloys. The numerical results indicate that the convective flow of the melt is very strong during the liquid-liquid phase transformation, and leads to a nonuniform distributions of the nucleation rate, number density, average radius and volume fraction of the minority phase droplets along the radial direction of the sample, resulting in serious phase segregation in solidified structure. A static magnetic field can effectively suppress the convective flow and causes a more uniform distributions of the nucleation rate, number density, average radius and volume fraction of the minority phase droplets. The application of a static magnetic field is favorable for the formation of a well dispersed microstructure. The lower the Pb content of the alloy and the higher the solidification velocity, the lower the intensity of the magnetic field needed for obtaining a sample with homogeneous distribution of the minority phase particles.
Key wordsAl-Pb monotectic alloy    static magnetic field    solidification    simulation    liquid-liquid transformation
收稿日期: 2010-09-13     
基金资助:

国家自然科学基金项目u0837601, 51071159和51031003资助

作者简介: 李海丽, 女, 1979年生, 博士
[1] Liu Y, Guo J J, Jia J. Foundry, 2000; 49: 11

(刘源, 郭景杰, 贾均. 铸造, 2000; 49: 11)

[2] Inoue A, Yano N. J Mater Sci, 1987; 22: 123

[3] Wecker J, Hehnolt R, Schulta L, Samwer K. Appl Phys Lett, 1993; 52: 1985

[4] Kolbe M, Brillo J, Egry I. Microgravity Sci Technol, 2006; 18: 174

[5] Cao C D, Wei B B. J Mater Sci Technol, 2002; 18: 73

[6] Xu J F, Dai F P,Wei B B. Acta Phys Sin, 2007; 56: 3996

(徐锦峰, 代富平, 魏炳波. 物理学报, 2007; 56: 3996)

[7] Guo J J, Liu Y, Su Y Q. Mater Sci Technol, 2002; 18: 1286

[8] Zhao J Z, Kolbe M, Li H L, Gao J R, Ratke L. Metall Mater Trans, 2007; 38A: 1162

[9] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K. Science, 2002; 297: 990

[10] Zhao J Z. Scr Mater, 2006; 54: 247

[11] Zhang L, Wang E G, Zuo X W, He J C. Acta Metall Sin, 2008; 44: 165

(张林, 王恩刚, 左小伟, 赫冀成. 金属学报, 2008; 44: 165)

[12] Yasuda H, Ohnaka I, Fujimoto S. Mater Lett, 2004; 58: 911

[13] Yasuda H, Ohnaka I, Fujimoto S. Scr Mater, 2006; 54: 527

[14] Zhao J Z, Li H L, Wang Q L, Zhao L, He J. Acta Metall Sin, 2009; 45: 1344

(赵九洲, 李海丽, 王青亮, 赵雷, 何 杰. 金属学报, 2009; 45: 1344)

[15] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219

(左小伟, 王恩刚, 韩欢, 张林, 赫冀成. 金属学报, 2008; 44: 1219)

[16] Decarlo J L, Pirich R G. Metall Trans, 1984; 15A: 2155

[17] Chester W. Scr Mater, 2005; 52: 79

[18] Yang S, Liu W J, Jia J. J Mater Sci, 2001; 36: 5351

[19] Yasuda H, Ohnaka I, Kawakami O. ISIJ Int, 2003; 43: 942

[20] He J, Zhao J Z, Li H L, Zhang X F, Zhang Q X. Metall Mater Trans, 2008; 39A: 1174

[21] Li H L, Zhao J Z. Comput Mater Sci, 2009; 46: 1069

[22] Chester W. J Fluid Mech, 1957; 3: 304

[23] Li H L, Zhao J Z, Zhang Q X, He J. Metall Mater Trans, 2008; 39A: 3308
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[13] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.