Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 62-70    
  论文 本期目录 | 过刊浏览 |
Ti处理改善船体钢焊接粗晶区的低温韧性研究
杨银辉1;2;3); 柴锋2); 严彪1;3); 苏航2); 杨才福2)
1) 同济大学材料科学与工程学院; 上海 200092
2) 钢铁研究总院结构材料研究所; 北京 100081
3) 同济大学上海市金属功能材料开发应用重点实验室; 上海 200092
STUDY ON LOW TEMPERATURE TOUGHNESS IMPROVEMENT OF WELDING COARSE GRAIN ZONE OF HULL STEELS BY Ti TREATMENT
YANG Yinhui1;2;3); CHAI Feng2) ; YAN Biao1;3); SU Hang2); YANG Caifu2)
1) School of Materials Science and Engineering; Tongji University; Shanghai 200092
2) Institute of Structure Materials; Central Iron and Steel Research Institute; Beijing 100081
3) Shanghai Key Lab of D&A for Metal-Functional Materials; Tongji University; Shanghai 200092
引用本文:

杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
. STUDY ON LOW TEMPERATURE TOUGHNESS IMPROVEMENT OF WELDING COARSE GRAIN ZONE OF HULL STEELS BY Ti TREATMENT[J]. Acta Metall Sin, 2010, 46(1): 62-70.

全文: PDF(1740 KB)  
摘要: 

采用Gleeble 1500D热模拟试验机对Ti和Al处理船体钢进行不同热输入焊接热模拟实验, 并利用OM和SEM研究了母材和热模拟粗晶区氧化物夹杂及显微组织. 结果表明: Ti处理钢中弥散分布的Ti氧化物具有良好的高温稳定性, 75 kJ/cm的焊接热输入对其形貌、成分及尺寸无影响, 能有效促进晶内针状铁素体(AF)形核长大. Al处理钢中以Al2O3为核心的复合夹杂高温易分解, 不能促进晶内AF形核. 线能量大于50 kJ/cm的大热输入条件下, Ti处理钢模拟粗晶区的低温韧性明显高于Al处理钢. t8/5>40 s时, Ti处理钢中较多的晶内AF组织抑制了M-A岛形成, 细化了基体铁素体组织, Al处理钢中的TiN和Nb(C, N)第二相粒子粗化, 粗晶区晶粒异常长大, 大于Ti处理钢中的奥氏体晶粒尺寸.

关键词 Ti处理钢低温韧性粗晶区针状铁素体Ti氧化物    
Abstract

The welding thermal simulation experiments were carried out on Ti/Al treated steels with different heat inputs by using Gleeble 1500D. The oxide inclusions and microstructures in the two base metals and simulated coarse grain heat affected zones (CGHAZ) were studied by using OM, SEM and EDS. At a higher heat input of 50 kJ/cm the low temperature Charpy impact energy in the CGHAZ of Ti treated steel (TTS) is higher than that of Al treated steel (ATS), and the impact energy of TTS reaches 60 J when the welding heat input was 75 kJ/cm. The dispersed Ti oxide inclusion with good high temperature stability in TTS can promote the nucleation of intragranular ferrite, and the welding heat input of 75 kJ/cm has only little effect on the morphology, composite and size of the inclusion. Whereas the Ti-rich nitride precipitated at the core of Al2O3 dissolved at high temperature, which can't promote acicular ferrite nucleation. The higher low temperature toughness of TTS is related to the formation of intragranular acicular ferrite in the CGHAZ. When t8/5 ranged from 40 s to 100 s, the volume fraction of M-A islands in TTS can be reduced and the ferrite matrix microstructure can be refined by formation of fine intragranular acicular ferrite nucleated at Ti oxide inclusion, and the hardness in the simulated CGHAZ in TTS is lower than that of ATS at the same t8/5 value. Simultaneously, the austenite grain growth became abnormal and the second phase particles, TiN and Nb(C,N), were coarsened in ATS, resulting in bigger austenite grain size than that in TTS.

Key wordsTi treated steel    low temperature toughness    coarse grain zone    acicular ferrite    Ti oxide
收稿日期: 2009-06-29     
ZTFLH: 

TG142

 
作者简介: 杨银辉, 男, 白族, 1975年生, 博士生

[1] Lee J L. Acta Metall, 1994; 42: 3291
[2] Tomita Y, Saito N, Tsuzuki T, Tokunaga Y, Okamoto K. ISIJ Int, 1994; 34: 829
[3] Song F M, Li Z G, Qian Y H, Shen K. Hot Work Technol, 2006; 35(19): 69
(宋凤明, 李自刚, 钱余海, 沈凯. 热加工工艺, 2006; 35(19): 69)
[4] Chen M A, Wu C S, Yang M, Tang Y M, Wu R J. Acta Metall Sin, 2004; 40: 148
(陈茂爱, 武传松, 杨 敏, 唐逸民, 吴人洁. 金属学报, 2004; 40: 148)

[5] Yamamoto K, Hasegawa T, Takamura J–I. ISIJ Int, 1996; 36: 80
[6] Rlcks R A, Howell P R, Barritte G S. J Mater Sci, 1982; 17: 732
[7] Ishikawa F, Takahashi T, Ochi T. Metall Mater Trans, 1994; 25A: 929
[8] Madariaga I, Romero J L, Guti´errez I. Metall Mater Trans, 1998; 29A: 1003
[9] Lee T–K, Kim H J, Kang B Y, Hwang S K. ISIJ Int, 2000; 40: 1260
[10] Dowling J M, Corbett J M, Kerr H W. Metall Trans, 1986; 17A: 1611.
[11] Shim J H, Oh Y J, Suh J Y, Cho Y W, Shim J D, Byun J S, Lee D N. Acta Mater, 2001; 49: 2115

[12] Kim H–S, Lee H–G, Oh K–S. ISIJ Int, 2002; 42: 1404
[13] Byun J S, Shim J H, Cho Y W, Lee D N. Acta Mater, 2003; 51: 1593
[14] Shim J H, Cho Y W, Chung S H, Shim J D, Lee D N. Acta Mater, 1999; 47: 2751
[15] TianDW, Qian B N, Chen X F, Si C Y. Phys Test Chem Anal–Phys Test, 1994; 30(1): 28
(田德蔚, 钱百年, 陈晓风, 斯重遥. 理化检验--物理分册, 1994; 30(1): 28)

[16] Chen Y T, GuoAM, Wu L X, Zeng J, Li P H. Acta Metall
Sin (Engl Lett), 2006; 19: 65
[17] Fang H S, Bai B Z, Zheng X H, Zheng Y K, Chen X Y, Zhao R F. Acta Metall Sin, 1986; 22: A283
(方鸿生, 白秉哲, 郑秀华, 郑燕康, 陈秀云, 赵如发. 金属学报, 1986; 22: A283)

[18] Chai F, Yang C F, Zhang Y Q, Xu Z. J Iron Steel Res, 2005; 17(1): 42
(柴锋, 杨才福, 张永权, 徐 洲. 钢铁研究学报, 2005; 17(1): 42)

[19] Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G. Mater Mech Eng, 2001; 25(6): 1
(方鸿生, 刘东雨, 徐平光, 白秉哲, 杨志刚. 机械工程材料, 2001; 25(6): 1)

[20] Yong Q L. The Second Phase in Iron & Steel. Beijing: Metallurgical Industry Press, 2006: 49
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 49)

[1] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[3] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[4] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[5] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[6] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[7] 宋峰雨,李艳梅,王平,朱伏先. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响*[J]. 金属学报, 2016, 52(7): 890-896.
[8] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[9] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[10] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[11] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[12] 张朋彦 高彩茹 朱伏先. 超大热输入焊接用EH40钢的模拟熔合线组织与性能[J]. 金属学报, 2012, 48(3): 264-270.
[13] 胡志勇 杨成威 姜敏 杨光维 王万军 王新华. Ti脱氧钢含Ti复合夹杂物诱导晶内针状铁素体的原位观察[J]. 金属学报, 2011, 47(8): 971-977.
[14] 舒玮 王学敏 李书瑞 贺信莱. 焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J]. 金属学报, 2011, 47(4): 435-441.
[15] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.