Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 264-270    DOI: 10.3724/SP.J.1037.2011.00518
  论文 本期目录 | 过刊浏览 |
超大热输入焊接用EH40钢的模拟熔合线组织与性能
张朋彦, 高彩茹, 朱伏先
东北大学 轧制技术及连轧自动化国家重点实验室, 沈阳 110819
MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING
ZHANG Pengyan, GAO Cairu, ZHU Fuxian
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819  
引用本文:

张朋彦 高彩茹 朱伏先. 超大热输入焊接用EH40钢的模拟熔合线组织与性能[J]. 金属学报, 2012, 48(3): 264-270.
, , . MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING[J]. Acta Metall Sin, 2012, 48(3): 264-270.

全文: PDF(4535 KB)  
摘要: 通过实验室EH40船板钢的超大热输入焊接热模拟实验, 研究焊接熔合线部位的组织与性能, 分析钢中夹杂物对原奥氏体晶界及晶内组织的影响规律. 结果表明: 实验钢在采用800 kJ/cm(t8/5=730 s)的焊接热输入, 峰值温度为1400 ℃(保温30 s)的条件下, --20 ℃的冲击功能够达到150 J以上. 其金相组织由块状的晶界铁素体(GBF)、晶内多边形铁素体(IPF)、晶内针状铁素体(IAF)组成, 且IAF面积分数占50%以上, 无板条贝氏体和粒状贝氏体组织. 实验钢中夹杂物类型合理、密度大, 有效地抑制了GBF的粗化. 钢中存在的直径为5-8 μm的大尺寸夹杂物, 也具有IGF形核能力, 甚至会形成IAF组织, 表现出贫Mn区的形核机制.
关键词 超大热输入焊接熔合线组织杂物晶内针状铁素体    
Abstract:The microstructure and mechanical properties in simulate fusion line of EH40 ship plate steel with high heat inputs were investigated using welding thermal simulation test. The effects of inclusions on the grain size of original austenite and intragranular ferrite (IGF) were analyzed. The results indicate that impact energy of the steels at -20 ℃ was more than 150 J with a heat input of 800 kJ/cm (t8/5=730 s) and maximum temperature of 1400 ℃ for 30 s. The microstructures of the steel were composed of GBF, IPF and IAF, and the fraction of IAF was over 50%. Lath bainite and granular bainite were not observed. The type and concentration of inclusions were ideal which decreased the growth of GBF. Those inclusions whose diameter were 5-8 μm can also promote the formation of IGF, and sometimes IAF was also formed through the nucleation at Mn-depleted zone.
Key wordshigh heat input welding    microstructure of fusion line    inclusion    intra acicular ferrite
收稿日期: 2011-08-10     
基金资助:

国家自然科学基金重点项目50834010, 国家高技术研究发展计划项目2009AA032530和教育部科学技术研究重点项目108036资助

作者简介: 张朋彦, 男, 1972年生, 博士生
[1] Zhang H Q, Jiang L Z. Baosteel Technol, 2006; 4: 20

(张汉谦, 江来珠. 宝钢技术, 2006; 4: 20)

[2] Mi G S, Chen D Z, Qu F. Pet Chem Constr, 2009; 29(5): 25

(米广生, 陈德志, 瞿 帆. 石油化工建设, 2009; 29(5): 25)

[3] Luo X B, Su H, Yang C F, Chai F, Yuan X M. Trans China Weld Inst, 2010; 31(10): 57

(罗小兵, 苏航, 杨才福, 柴锋, 袁晓敏. 焊接学报, 2010; 31(10): 57)

[4] Suzuki S, Ichimiya K, Akita T. JFE Tech Rep, 2004; 5: 19

[5] Hitoshi H. Tetsu Hagane, 2004; 5: 271

[6] Minagawa M, Ishikawa T, Mabuchi H. CAMP–ISIJ, 1997; 10: 590

[7] Hong S G, Kang K J, Park C G. Scr Mater, 2002; 6: 163

[8] Vega M I, Medina S F, Quispe A, Gomez M, Gomez P P. ISIJ Int, 2005; 45: 1878

[9] Kasamatsu Y. Tetsu Hagane, 1979; 65: 1232

[10] Kojima A, Kiyose A, Minagawa M, Hirano A, Yoshii K, Nakajima T, Hoshino M, Ueshima Y. CAMP–ISIJ, 2003; 16: 360

[11] Kiyomichi N, Akihiro Y, Sengo K, Masahiko H, Yuichi K. Tetsu Hagane, 2004; 90: 141

[12] Qiu P J, Michihiko N. Tetsu Hagane, 1998; 84: 592

[13] Matsuda S, Okumura N, Okamura Y. Tetsu Hagane, 1974; 60: 174

[14] Matsuda S, Okumura N. Tetsu Hagane, 1976; 62: 1209

[15] Kasamatsu Y, Takashima S, Hosoya T. Tetsu Hagane, 1976; 62: 678

[16] Mukae S, Nishio K, Katoh M, Isayama T. PJWS, 1985; 3(3): 131

[17] Koda M, Amano K, Funahashi Y, Shiga C, Ueda S. Tetsu Hagane, 1984; 70: 1265

[18] ShuW, Wang X M, Li S R, He X L. Acta Metall Sin, 2011; 47: 435

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2011; 47: 435)

[19] Han S C. Dev Appl Mater, 1995; 10: 2

[20] Murakani T, Takeda H, Nanba S. PJWS, 2004; 75: 324

[21] Kang Y B, Lee H G. ISIJ Int, 2010; 50: 501

[22] Yamamoto K, Jinichi T. ISIJ, 1996; 36: 80

[23] Shim J, Cho Y. Acta Mater, 1999; 47: 2751

[24] Ishikawa F, Takahashi F. ISIJ, 1995; 35: 1128

[25] Madariaga I, Gutierrez I. Acta Mater, 1999; 47: 95

[26] Enomoto M. Met Mater Int, 1998; 4: 115

[27] Lee J L. Acta Metall Mater, 1994; 42: 3291

[28] Pan Y T, Lee J L. Mater Des, 1994; 15: 331

[29] Hong S G, Kang K J, Park C G. Scr Mater, 2002; 6: 163

[30] Yamamoto K, Hasegawa T, Takamura J. ISIJ, 1996; 36: 80

[31] Jinichi T, Shozo M. Proceedings of the Sixth Internal Iron and Steel Congress. Nagoya: Iron and Steel Institute of Japan, 1999: 591
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[5] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[9] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[12] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[13] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.
[14] 马跃 苏航 潘涛 余音宏 杨才福 张永权 彭云. 中高碳钢中复合延性夹杂物控制研究[J]. 金属学报, 2012, 48(11): 1321-1328.
[15] 童文辉 王杰 周吉学 杨院生. 气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物[J]. 金属学报, 2012, 48(1): 63-69.