Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 971-977    DOI: 10.3724/SP.J.1037.2011.00128
  论文 本期目录 | 过刊浏览 |
Ti脱氧钢含Ti复合夹杂物诱导晶内针状铁素体的原位观察
胡志勇1, 杨成威2, 姜敏1,杨光维1, 王万军1, 王新华1
1. 北京科技大学冶金与生态学院, 北京 100083
2. 武汉钢铁(集团)公司, 武汉 430080
IN SITU OBSERVATION OF INTRAGRANULAR ACICULAR FERRITE NUCLEATED ON COMPLEX TITANIUM–CONTAINING INCLUSIONS IN TITANIUM DEOXIDIZED STEEL
HU Zhiyong 1, YANG Chengwei 2, JIANG Min 1, YANG Guangwei1, WANG Wanjun 1,WANG Xinhua 1
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2. Wuhan Iron and Steel (Group) Corp, Wuhan 430080
引用本文:

胡志勇 杨成威 姜敏 杨光维 王万军 王新华. Ti脱氧钢含Ti复合夹杂物诱导晶内针状铁素体的原位观察[J]. 金属学报, 2011, 47(8): 971-977.
, , , , , . IN SITU OBSERVATION OF INTRAGRANULAR ACICULAR FERRITE NUCLEATED ON COMPLEX TITANIUM–CONTAINING INCLUSIONS IN TITANIUM DEOXIDIZED STEEL[J]. Acta Metall Sin, 2011, 47(8): 971-977.

全文: PDF(1215 KB)  
摘要: 采用高温共聚焦激光显微镜(CSLM)对含Ti复合夹杂物诱导晶内针状铁素体(IAF)进行动态原位观察, 并用OM, FE-SEM, EDS和EPMA研究奥氏体晶粒尺寸和冷却速率对含Ti复合夹杂物诱导生成IAF的影响. 结果表明, IAF的开始生成温度随奥氏体晶粒尺寸的增加,先升高后降低; 生成IAF体积分数随冷却速率的提高显著增加, 归功于IAF开始生成温度的提高. 贫Mn区的形成是含Ti复合夹杂物(Ti-Mn-O)+(Si-Al-Mn-O)+MnS诱导生成IAF的主要驱动力. 此外, 在该实验条件下得出, 当奥氏体晶粒尺寸在132-255 μm时, IAF开始生成的温度范围为550-633℃;奥氏体晶粒尺寸为176 μm, 冷却速率为5℃/s时, 室温组织中IAF体积分数高达90%.
关键词 晶内针状铁素体(IAF) 含Ti复合夹杂物 高温激光共聚焦显微镜(CSLM) 原位观察贫锰区(MDZ)    
Abstract:The nucleation of intragranular acicular ferrite (IAF) on complex titanium–containing inclusions for titanium deoxidized steel was observed dynamically by confocal scanning laser microscope (CSLM), and the effects of average austenite grain size and cooling rate on the nucleation of IAF was systematically investigated by using OM, FE–SEM and EDS. Furthermore, the mechanism of IAF nucleation on the complex titanium–containing inclusions was studied by using EPMA in detail. The results show that the starting formation temperature of IAF firstly increases with increasing austenite grain size, then decreases. With the increase of cooling rate, the volume fraction of IAF increases obviously due to the increase of the starting formation temperature. Mn–deplete zone (MDZ) is considered to be a dominant driving force for the nucleation of IAF. In addition, it is found that the range of starting formation temperature of IAF is 550—633 ℃ with austenite grain size in the range of 132—255 μm. Volume fraction of IAF obtained at room temperature is up to 90% with austenite grain size of 176 μm and a cooling rate of 5 ℃/s in this experiment condition.
Key wordsintragranular acicular ferrite (IAF)    complex Ti–containing inclusion    confocal scanning laser microscope (CSLM)    in situ observation    Mn–deplete zone (MDZ)
收稿日期: 2011-03-11     
ZTFLH: 

TF19

 
基金资助:

国家重点基础研究发展计划资助项目2010CB630806

作者简介: 胡志勇, 男, 1979年生, 博士生
[1] Mabuchi H, Uemori R, Fujioka M. ISIJ Int, 1996; 36: 1406

[2] Koseki T, Thewlis G. Mater Sci Technol, 2005; 21: 867

[3] Zhang D, Terasaki H, Komizo Y. Acta Mater, 2010; 58:1369

[4] Smith Y E, Coldren A P, Cryderman R L. Toward Improved Ductility and Toughness. Tokyo: Climax Molybdenum Company Ltd., 1972: 119

[5] Takamura J C, Mizoguchi S. Proc 6th Int Iron and Steel Congress, Janpan, 1990(CD–Rom)

[6] Yamada W, Matsumiya T. Proc 6th Int Iron and Steel Congress, Janpan, 1990(CD–Rom)

[7] Kikuchi N, Nabeshima S, Kishimoto Y, Ishiguro Y, Sridhar S. ISIJ Int, 2009; 49: 1036

[8] Byun J S, Shim J H, Cho Y W, Lee D N. Acta Mater, 2003; 51: 1593

[9] Yang C W, Jiang M, Hu Z Y, Lu N B, Wang X H. AISTech 2011 Proceedings, USA: The Association for Iron & Steel Technology, 2011: 661

[10] Yin H B, Shibata H, Emi T, Suzuki M. ISIJ Int, 1997; 37: 936

[11] Sarma D S, Karasev A V, Jonsson P G. ISIJ Int, 2009; 49: 1063

[12] ShuW, Wang X M, Li S R, He X L. Acta Metall Sin, 2010; 46: 997

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2010; 46: 997)

[13] Yang Z, Wang F, Wang S, Song B. Steel Res Int, 2008; 79: 390

[14] Ohkita S, Horii Y. ISIJ Int, 1995; 35: 1170

[15] Ricks R A, Howell P R, Barritte G S. J Mater Sci, 1982; 17: 732

[16] Jin H H, Shim J H, Cho Y W, Lee H C. ISIJ Int, 2003; 43: 1111

[17] Brooksbank D, Andrews K J. Iron Steel Inst, 1972; 210: 246

[18] Shim J H, Oh Y J, Suh J Y, Cho Y W, Shim J D, Byun J S, Lee D N. Acta Mater, 2001; 49: 2115

[19] Shim J H, Cho Y W, Chung S H, Shim J D, Lee D N. Acta Mater, 1999; 47: 2751

[20] Byun J S, Shim J H, Suh J Y, Oh Y J, Cho Y W, Shim J D, Lee D N. Mater Sci Eng, 2001; A319–321: 326

[21] Ishikawa F, Takahashi T, Ochi T. Metall Mater Trans, 1994; A25: 929
[1] 余龙, 宋西平, 张敏, 李宏良, 焦泽辉, 于慧臣. 高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展[J]. 金属学报, 2014, 50(10): 1253-1259.
[2] 姜冰 郭志猛 邢献然. 外场作用下BaTiO3单晶裂纹扩展和畴变[J]. 金属学报, 2011, 47(5): 605-610.
[3] 舒玮 王学敏 李书瑞 贺信莱. 焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J]. 金属学报, 2011, 47(4): 435-441.
[4] 舒玮 王学敏 李书瑞 贺信莱. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010, 46(8): 997-1003.
[5] 崔建国; 戴耀; 傅永辉; 李年; 孙军; 何家文 . 原位观察1420Al-Li合金疲劳裂纹的“自抑制”[J]. 金属学报, 1999, 35(9): 951-954 .
[6] 张万明; 郑启; 孙晓峰; 于洋; 胡壮麒 . 定向凝固Ni-20Al-30Fe合金变形的TEM原位观察[J]. 金属学报, 1999, 35(4): 375-378 .
[7] 谷飚;张静武;万发荣;褚武杨. 溶解促进位错发射、运动导致黄铜薄膜应力腐蚀的TEM原位观察[J]. 金属学报, 1995, 31(4): 156-164.
[8] 杨延清;盂祥康;贾虎生;康沫狂;马勤. Cu-Zn合金中贝氏体及平衡相的加厚和剪切应力场[J]. 金属学报, 1995, 31(4): 145-150.
[9] 高克玮;褚武扬;肖纪美. 腐蚀促进位错发射、运动及SCC形核的TEM原位观察(Ti_3Al+Nb──甲醇体系)[J]. 金属学报, 1995, 31(23): 477-483.
[10] 陈奇志;褚武扬;乔利杰;王燕斌;肖纪美. 氢致脆断的TEM原位拉伸观察[J]. 金属学报, 1994, 30(6): 248-256.
[11] 黄一中;陈奇志;袁昌言;褚武扬. 阳极溶解促进位错发射和运动的TEM原位观察[J]. 金属学报, 1994, 30(22): 453-458.
[12] 胡志忠;马明亮;刘彦庆;刘静华. (F+M+A)三相钢低周疲劳的扫描电镜动态研究[J]. 金属学报, 1994, 30(10): 469-476.
[13] 刘剑虹;何世禹;姚枚. 3Cr2W8V钢热疲劳裂纹长大方式的原位观察[J]. 金属学报, 1992, 28(12): 15-17.
[14] 张修睦;李依依. 铁基合金马氏体的形核与长大[J]. 金属学报, 1991, 27(3): 19-26.
[15] 卢柯;王景唐;董林. 用TEM研究非晶态Ni-P合金薄膜原位加热时的动态晶化过程[J]. 金属学报, 1991, 27(1): 108-114.