Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 19-26    
  论文 本期目录 | 过刊浏览 |
中碳钢回火马氏体热变形过程中的铁素体动态再结晶
李龙飞1); 夏杨青1); 孙祖庆1); 杨王玥2)
1.北京科技大学新金属材料国家重点实验室; 北京 100083 2. 北京科技大学材料科学与工程学院; 北京 100083
DYNAMIC RECRYSTALLIZATION OF FERRITE IN A MEDIUM-CARBON STEEL WITH TEMPERED MARTENSITE STRUCTURE DURING HOT DEFORMATION
LI Longfei1); XIA Yangqing1); SUN Zuqing1); YANG Wangyue2)
1 The State Key Laboratory for Advanced Metals and Materials; University of Science $\&$ Technology Beijing; Beijing 100083 2 School of Materials Science and Engineering; University of Science & Technology Beijing; Beijing 100083
引用本文:

李龙飞, 夏杨青, 孙祖庆, 杨王玥 . 中碳钢回火马氏体热变形过程中的铁素体动态再结晶[J]. 金属学报, 2010, 46(1): 19-26.
. DYNAMIC RECRYSTALLIZATION OF FERRITE IN A MEDIUM-CARBON STEEL WITH TEMPERED MARTENSITE STRUCTURE DURING HOT DEFORMATION[J]. Acta Metall Sin, 2010, 46(1): 19-26.

全文: PDF(1797 KB)  
摘要: 

利用热压缩实验, 研究了中碳钢回火马氏体在700 ℃/0.01 s-1条件下变形时的组织演变规律, 分析了渗碳体粒子状态的影响. 实验结果表明: 中碳钢回火马氏体热变形过程中, 发生了渗碳体粒子粗化和铁素体动态再结晶, 形成由微米级的等轴铁素体晶粒与均匀分布的渗碳体粒子组成的超细化(α+θ)复相组织. 与静态回火相比, 形变促进Fe原子和C原子的扩散, 使渗碳体粒子粗化动力学提高2-3个数量级. 渗碳体粒子的粗化主要来自铁素体晶界上粒子尺寸的增加, 铁素体晶粒内部的细小粒子尺寸无明显变化但数量减少, 前者有助于以多粒子协同方式实现粒子激发形核, 后者减小了晶界迁移的阻力, 两者均有利于铁素体动态再结晶的发生. 随着初始组织中渗碳体粒子尺寸的减小, 发生动态再结晶所需应变量增大, 但所得复相组织更加均匀、细化.

关键词 中碳钢回火马氏体铁素体渗碳体粒子 动态再结晶    
Abstract

For plain carbon steels, the microduplex (α+θ) structure consisting of ultrafine ferrite matrix and dispersed cementite particles demonstrates a good balance between strength and ductility as compared with a normal microstructure, e.g. ferrite plus pearlite in hypoeutectoid steels or pearlite in eutectoid steels etc.. Various thermo-mechanical treatments have been developed to obtain such microduplex (α+θ) structure. It is commonly considered that the formation of fine equiaxed ferrite grains during thermo-mechanical treatments involving hot (warm) deformation could be attributed to dynamic recrystallization (DRX) of ferrite. However, the mechanism of DRX of ferrite during the formation of the microduplex (α+θ) structure as well as the effect of cementite particles on DRX of ferrite are still not well understood. In the present work, DRX of ferrite in a medium-carbon steel with different tempered martensites was investigated by hot uniaxial compression tests at 0.01 s-1 and 700 ℃, and the effect of cementite particles with different initial states was analyzed. The results indicate that during hot deformation the coarsening of cementite particles and DRX of ferrite took place, leading to the formation of the microduplex (α+θ) structure. In comparison with static tempering, the diffusions of Fe atoms and C atoms were enhanced by hot deformation and thus the coarsening kinetics of cementite particles was accelerated by 2-3 orders of magnitude. During hot deformation the sizes of cementite particles at the boundaries of ferrite grains increased and the amount of cementite particles in ferrite grains decreased. The former is beneficial to the particle stimulated nucleation under coordinated effects of several particles, and the later can reduce the drag effect of cementite particles on the migration of grain boundaries, both of them are advantageous to DRX of ferrite. With the decrease in the size of cementite particles in the initial microstructures, the critical strain for DRX of ferrite increased, but the resultant microduplex ($\alpha+\theta$) structure is fine, and more uniform.

Key wordsmedium-carbon steel    tempered martensite    ferrite    cementite particle    dynamic recrystallization
收稿日期: 2009-06-08     
ZTFLH:  TG142.1  
基金资助:

国家自然科学基金资助项目50701004

作者简介: 李龙飞, 男, 1977年生, 副研究员, 博士

[1] Ma E. Scr Mater, 2003; 49: 663

[2] Ohmori A, Torizuka S, Nagai K. ISIJ Int, 2004; 44: 1063

[3] Tsuji N, Ueji R, Minamino Y, Saito Y. Scr Mater, 2002; 46: 305

[4] Torizuka S, Ohmori A, Murty S V S N, Nagai K. Scr Mater, 2006; 54: 563

[5] Zhao M C, Hanamura T, Qiu H, Nagai K, Yang K. Scr Mater, 2006; 54: 1395

[6] Storojeva L, Ponge D, Kaspar R, Raabe R. Acta Mater, 2004; 52: 2209

[7] Li L F, Yang W Y, Sun Z Q. Metall Mater Trans, 2008; 39A: 624

[8] Poorganji B, Miyamoto G, Maki T, Furuhara T. Scr Mater, 2008; 59: 279

[9] Li Q, Wang T S, Jing T F, Gao Y W, Zhou J F, Yu J K, Li H B. Mater Sci Eng, 2009; A515: 38

[10] Wang M, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 1009

(王猛, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 1009)

[11] Wang M, Li L F, Yang W Y, Sun Z Q. J Univ Sci Technol Beijing, 2008; 30: 993

(王猛, 李龙飞, 杨王玥, 孙祖庆. 北京科技大学学报, 2008; 30: 993)

[12] Tsuchiyama T, Miyamoto Y, Takaki S. ISIJ Int, 2001; 41: 1047

[13] Kramer J J, Pound G M, Mehl R F. Acta Metall, 1958; 6: 763

[14] Stuart H, Ridley N. J Iron Steel Inst, 1966; 204: 711

[15] Swartz J C. Trans Metall Soc AIME, 1969; 245: 1083

[16] Smith R P. Trans Metall Soc AIME, 1962; 224: 105

[17] Li C Y, Blakely J M, Feingold A H. Acta Metall, 1966; 14: 1397

[18] Chattopadhyay S, Sellars C M. Acta Metall, 1982; 30: 157

[19] Fridberg J, Torndahl L E, Hillert M. Jernkont Ann, 1969; 153: 263

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[5] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[6] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[12] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[15] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.