Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1146-1152    
  论文 本期目录 | 过刊浏览 |
由形核过冷度研究Ga熔体原子团尺寸变化的滞后性
坚增运; 周晶; 常芳娥; 介万奇
1) 西安工业大学材料与化工学院; 西安 710032 2) 西北工业大学凝固技术国家重点实验室; 西安 710072
RESEARCH ON THE HYSTERESIS OF ATOM CLUSTER SIZE VARIATION IN Ga MELT FROM THE NUCLEATION UNDERCOOLING
JIAN Zengyun; ZHOU Jing; CHANG Fang'e; JIE Wanqi
1) School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an 710032 2) State Key Lab of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
引用本文:

坚增运 周晶 常芳娥 介万奇. 由形核过冷度研究Ga熔体原子团尺寸变化的滞后性[J]. 金属学报, 2009, 45(9): 1146-1152.
. RESEARCH ON THE HYSTERESIS OF ATOM CLUSTER SIZE VARIATION IN Ga MELT FROM THE NUCLEATION UNDERCOOLING[J]. Acta Metall Sin, 2009, 45(9): 1146-1152.

全文: PDF(767 KB)  
摘要: 

DSC测试表明, Ga的形核过冷度随其熔体高温保温时间的延长而增大, 随熔体降温后保温时间的延长而减小, 表现出明显的滞后性. 通过对熔体温度与熔体中原子团尺寸之间关系的热力学和动力学研究, 得到了金属熔体原子团中的原子数随温度变化的关系式, 获得了确定熔体温度变化后其形核温度变化滞后幅度的方法, 确定的Ga的形核温度变化滞后幅度与实验结果相吻合, 其误差只有3.9%-4.8%.

关键词 Ga熔体形核过冷度原子团尺寸 滞后性    
Abstract

In order to achieve the relationship between the melt thermal history and the solidification structure so
as to explore new methods to effectively control the solidification process and the solidification structure of metal,
the effect of the melt thermal history of Ga on the nucleation undercooling has been studied by using DSC,
and some formulae among the atom cluster size in melt, the nucleation undercooling of melt, the melt temperature and
the concerned physical and chemical parameters of metal have been proposed. The experimental results
show that the nucleation undercooling increases with increasing the holding time at high temperature after a
heating process and decreases with increasing the holding time after cooling to low temperature, but the change
rates of the nucleation undercooling decrease with increasing the holding time. An equation between the atom
number in the largest cluster in the melt and the melt temperature has been obtained by studying the effect of the
liquid temperature on the cluster size thermodynamically and kinetically. Formulae between the homogenous
nucleation undercooling, the heterogeneous nucleation undercooling and the temperature of liquid metal have been
achieved. In terms of these formulae, the atom number in the largest cluster in the melt and the nucleation
undercooling of the melt can be predicted if the temperature at which liquid metal is heated and hold is known. A
method for predicting the hysteretic extent of nucleation temperature after changing the liquid temperature has
been developed. The predicted results of the hysteretic extent of the nucleation temperature are in agreement with
the experiential results. The predicted and experimental hysteretic extents of the nucleation temperature are -10.7
and -10.3 K for Ga heated from 303 K to 373 K, and 7.9 and 8.3 K for Ga cooled from 373 K to 313 K, respectively. The errors between the predicted hysteretic extent of the nucleation temperature and the experimental
result are only 3.9\% for Ga heated from 303 K to 373 K and 4.8\% for Ga cooled from 373 K to 313 K,
respectively.

Key wordsGa    melt    nucleation undercooling    atom cluster size    hysteresis
收稿日期: 2009-02-09     
ZTFLH: 

TG24

 
基金资助:

国家自然科学基金项目50671075和50571076以及国家重点基础发展计划项目2006CB605202资助

作者简介: 坚增运, 1962年生, 男, 教授, 博士

[1] Vasin M G, Lad’yanov V I. Phy Rev, 2003; 68E: 512021
[2] Hpolland–Morutz D, Schenk T, Simonet V, Bellissent R,Convert P, Hansen T, Herlach D M. Mater Sci Eng, 2004; A375–377: 98
[3] Chen H S, Zu F Q, Chen J, Li Z, Ding G H, Huang Z Y. Sci Chin, 2008; 51: 1402
[4] Yin F S, Sun X F, Guan H R, Hu Z Q. J Alloys Compd, 2004; 364: 225
[5] Wang W M, Bian X F. Jing Y Q, Syliusarenko S I. Metall Mater Trans, 2000; 31A: 2163
[6] Kaban I, Gruner S, Hoyer W, Il’inskii A, Shpak A. J Non– Cryst Solids, 2007; 353: 1979
[7] Kaban I, Hoyer W, Ilinskii A, Shpak A, Jovari P. J Non–Cryst Solids, 2007; 353: 1808
[8] Zhang L, Wu Y S, Bian X F, Li H, Wang W M, Wu S. J Non–Cryst Solids, 2000; 262: 169
[9] Lad’yanov V I, Bel’tyukov A L, Men’shikova S G, Maslov V V, Nosenko V K, Mashira V A. Phys Chem Liq, 2008; 46: 71
[10] Lad’yanov V I, Bel’tyukov A L, Maslov V V, Shishmarin A I, Vasin M G, Nosenko V K, Mashira V A. J Non–Cryst Solids, 2007; 353: 3264
[11] Lu Y P, Yang G C, Yang C L, Wang H P, Zhou Y H. Prog Nat Sci, 2006; 16: 287
[12] Geng X G, Chen G, Fu H Z. Acta Metall Sin, 2002; 38: 225
(狄兴国, 陈 光, 傅恒志. 金属学报, 2002; 38: 225)
[13] Cheng G, Yu J W, Xie F Q, Fu H Z. Acta Metall Sin, 2001; 37: 488
(陈光, 俞建威, 谢发勤, 傅恒志. 金属学报, 2001; 37: 488)
[14] Eskin D G, Savran V I, Katgerman L. Metall Mater Trans, 2005; 36A: 1965
[15] Chen Z W, Jie W Q, Zhang R J. Mater Lett, 2005; 59: 2183
[16] Nafisi S, Emadi D, Shehata M T, Shehata M T, Ghomashchi R. Mater Sci Eng, 2006; A432: 71
[17] Li P J, Nikitin V I, Kandalova E G, Nikitin K V. Mater Sci Eng, 2002; A332: 371
[18] Turnbull D. J Appl Phys, 1950; 21: 1022
[19] Turkdogan E T. Physical Chemistry of High Temperature Technology. New York: Academic Press, 1980: 88
[20] Spaepen F, Meyer R B. Scr Metall, 1976; 10: 37
[21] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[22] Jian Z Y, Kuribayashi K, Jie W Q. Mater Trans, 2002; 43: 721
[23] Bernardin J D, Mudawar I, Walsh C B, Franses E I. In J Heat Mass Trans, 1997; 40: 1017
[24] Vadgama B, Harris D K. Exp Therm Fluid Sci, 2007; 31: 979

[1] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[2] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[3] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[5] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[6] 陈树君, 苑城玮, 蒋凡, 闫志鸿, 章朋田. 电阻加热金属丝材熔滴过渡的产热机制与熔化行为研究[J]. 金属学报, 2018, 54(9): 1297-1310.
[7] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[8] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[9] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[11] 王海锋,苏海军,张军,黄太文,刘林,傅恒志. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*[J]. 金属学报, 2016, 52(4): 419-425.
[12] 卓伟佳, 刘源, 李言祥. 单室Gasar工艺中抽拉速率对藕状多孔Cu气孔形貌的影响*[J]. 金属学报, 2014, 50(8): 921-929.
[13] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[14] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[15] 李再久,金青林,杨天武,蒋业华,周荣. Gasar连铸工艺制备藕状多孔Cu-Zn合金[J]. 金属学报, 2013, 49(6): 757-762.