Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1297-1310    DOI: 10.11900/0412.1961.2018.00035
  本期目录 | 过刊浏览 |
电阻加热金属丝材熔滴过渡的产热机制与熔化行为研究
陈树君1, 苑城玮1, 蒋凡1(), 闫志鸿1, 章朋田2
1 北京工业大学机械工程与应用电子技术学院 汽车结构部件先进制造技术教育部工程研究中心 北京 100124
2 北京卫星制造厂有限公司 北京 100094
Study on Heat Generation Mechanism and Melting Behavior of Droplet Transition in Resistive Heating Metal Wires
Shujun CHEN1, Chengwei YUAN1, Fan JIANG1(), Zhihong YAN1, Pengtian ZHANG2
1 Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
2 Beijing Satellite Manufacturing Co., Ltd., Beijing 100094, China
引用本文:

陈树君, 苑城玮, 蒋凡, 闫志鸿, 章朋田. 电阻加热金属丝材熔滴过渡的产热机制与熔化行为研究[J]. 金属学报, 2018, 54(9): 1297-1310.
Shujun CHEN, Chengwei YUAN, Fan JIANG, Zhihong YAN, Pengtian ZHANG. Study on Heat Generation Mechanism and Melting Behavior of Droplet Transition in Resistive Heating Metal Wires[J]. Acta Metall Sin, 2018, 54(9): 1297-1310.

全文: PDF(5097 KB)   HTML
摘要: 

根据电阻加热金属原理,提出了一种适用于空间环境的金属成形方法:电阻加热金属丝材熔敷成形技术。将金属丝材与基板短路,可编程电源输出的电流流过金属丝材与基板产生电阻热,金属丝材开始熔化与过渡。电压电流采集系统与高速摄像系统分别对电信号和图像实时同步采集,分析金属丝材熔化过程和过渡行为的电信号与图像的变化,研究电流波形和电流大小对金属熔体的影响,分析电阻加热金属丝材过程动态电阻的变化趋势,通过不同空间位置下金属熔体向基板过渡的行为,研究重力对金属熔体在过渡阶段的影响。结果表明,恒流电流加热金属丝材时,改变电流大小可以改变金属熔体的总热量,但无法精确控制加热速率和热量的输入;脉冲电流加热金属丝材时,通过脉冲个数精确控制加热速率和热量输入。在过渡阶段,当恒流电流工作时,熔体受到一个固定方向的力直至过渡;当脉冲电流工作时,熔体受力摆动过渡。2种电流分别加热金属丝材时,金属丝材的动态电阻变化趋势基本相同且与金属丝材的熔化状态对应。在地面环境下,金属熔体过渡阶段受到表面张力、电磁收缩力作用,使其可以克服重力过渡至基板,验证了电阻加热金属丝材熔敷成形技术在空间环境下的可行性。

关键词 可编程电源电阻加热熔体过渡动态电阻    
Abstract

With the development of space technology, the ability of manufacturing in space is a necessary guarantee for a long-term space mission. To achieve the repair and maintenance of spacecraft structure in space, a metal additive manufacturing method named resistance heating metal wire additive manufacturing process has been proposed in this work. During the experiments, the wire and the base plate are short-circuited, the current output from the programmable power source flows through the wire and the base plate to generate resistance heat, and then the wire begins to melt and transfer to the base plate. A real-time synchronization system has been used to record the current, voltage and image of metal wire synchronously, to study the melting process of metal wire by resistance heating. The direct current and pulse current with different amplitudes which were supplied by programmable power source have been used to study the effect of the current style and value on the melting process and transition behavior of metal wire. The change characteristic of the resistance in the wire and base plate has been analyzed during wire melting, to study the relationship between the current resistance and the wire state. The effect of gravity on the wire melting process has been studied by the wire transfer experiments at different space locations. The results show that when the metal wire was heated by the constant current, the total heat of metal melt could be controlled by controlling the current value, but it was difficult to precisely control the heating speed and the heat input. When using pulse current heating, both the heating speed and the heat input could be precisely controlled by pulse frequency and pick value. In the melt transfer stage, the constant current provides a fixed force on the molten wire, but the pulse current makes the molten wire swing by the intermittent force. The real-time resistance of metal wire during heating could be used to reflect the melting state of wire in both current styles. On the ground environment, the surface tension and electromagnetic contraction force make the melting wire against the gravity and transfer to the base plate, which illustrated the feasibility of using this process in space environment.

Key wordsprogrammable power supply    resistance heating    melt transition    dynamic resistance
收稿日期: 2018-01-19     
ZTFLH:  TG441.2  
基金资助:国家自然科学基金项目No.51475009
作者简介:

作者简介 陈树君,1971年生,教授,博士

图1  电阻加热丝材实验系统示意图
图2  电阻加热金属丝材原理示意图
图3  电阻熔丝实验装置
Current waveform Current / A Pulse period / ms Duty cycle / %
Constant 130 - -
155 - -
180 - -
Pulse 216-0 20 60
258-0 20 60
300-0 20 60
表1  电阻加热金属丝材工艺参数表
图4  130 A恒流电阻加热金属丝材熔化与过渡过程
图5  130 A恒流电流大小与时间的变化曲线
图6  155 A恒流电阻加热金属丝材熔化与过渡过程
图7  155 A恒流电流大小与时间的变化曲线
图8  180 A恒流电阻加热金属丝材熔化与过渡过程
图9  180 A恒流电流大小与时间的变化曲线
图10  216 A-0 A脉冲电流电阻加热金属丝材熔化与过渡过程
图11  216 A-0 A脉冲电流大小与时间的变化曲线
图12  258 A-0 A脉冲电流电阻加热金属丝材熔化与过渡过程
图13  258 A-0 A脉冲电流大小与时间的变化曲线
图14  300 A-0 A脉冲电流电阻加热金属丝材熔化与过渡过程
图15  300 A-0 A脉冲电流大小与时间的变化曲线
图16  基板电极位置对金属熔体的影响
图17  金属丝材与地面垂直和平行时金属熔体受力示意图
图18  不同恒流电流时熔体偏移量
图19  130、155和180 A恒流电流熔体过渡图
图20  脉冲电流熔体偏移量
图21  216 A-0 A、258 A-0 A及300 A-0 A脉冲电流熔体过渡图
图22  恒流电流动态电阻变化趋势
图23  脉冲电流动态电阻变化趋势
[1] Zhang T, Zhao Z, Liu S, et al.Design and experimental performance verification of a thermal property test-bed for lunar drilling exploration[J]. Chin. J. Aeronaut., 2016, 29: 1455
[2] Voels S A, Eppler D B.The international space station as a platform for space science[J]. Adv. Space Res., 2004, 34: 594
[3] Chen Y H, Kent D, Bermingham M, et al.Manufacturing of biocompatible porous titanium scaffolds using a novel spherical sugar pellet space holder[J]. Mater. Lett., 2017, 195: 92
[4] Qi J F, Zeng R C, Wang Z, et al.Analysis of research status on in-situ fabrication and repair technology in space[J]. Manned Spaceflight, 2014, 20: 580(祁俊峰, 曾如川, 王震等. 太空原位制造和修复技术研究现状分析[J]. 载人航天, 2014, 20: 580)
[5] Ding X L, Wu L N.Research on in-space manufacturing technology abroad[J]. Aerosp. Manuf. Technol., 2007, (6): 11(丁新玲, 吴丽娜. 国外太空制造技术研究[J]. 航天制造技术, 2007, (6): 11)
[6] Zhang T C.3D printing and its military application[J]. Space Explor., 2016, (8): 36(张天驰. 3D打印技术在太空的应用[J]. 太空探索, 2016, (8): 36)
[7] Jia P, Li H, Sun Z T.Space application of 3D printing in foreign countries[J]. Space Int., 2015, (4): 31(贾平, 李辉, 孙棕檀. 国外打印技术在航天领域的应用分析3D[J]. 国际太空, 2015, (4): 31)
[8] Gu Y D, Gao M, Zhao G H, et al.Science researches of Chinese manned space flight[J]. Chin. J. Space Sci., 2014, 34: 518
[9] Zou Y L, Li W, Ouyang Z Y.China's deep-space exploration to 2030[J]. Chin. J. Space Sci., 2014, 34: 516
[10] Tian X Y, Li D C, Lu B H.Status and prospect of 3D printing technology in space[J]. Manned Spaceflight, 2016, 22: 471(田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22: 471)
[11] Suita Y, Matsushita K, Terajima N, et al.Arc initiation phenomena by space GHTA welding process using touch start technique in a vacuum[J]. Weld. Int., 2006, 20: 707
[12] Gill S S, Arora H, Sheth V.On the development of antenna feed array for space applications by additive manufacturing technique[J]. Addit. Manuf., 2017, 17: 39
[13] Ngo T D, Kashani A, Imbalzano G, et al.Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites, 2018, 143B: 172
[14] Strong D, Kay M, Conner B, et al.Hybrid manufacturing-integrating traditional manufacturers with additive manufacturing (AM) supply chain[J]. Addit. Manuf., 2018, 21: 159
[15] Eyers D R, Potter A T. Industrial additive manufacturing: A manufacturing systems perspective [J]. Comput. Ind., 2017, 92-93: 208
[16] Guo N N, Leu M C.Additive manufacturing: Technology, applications and research needs[J]. Front. Mech. Eng., 2013, 8: 215
[17] Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P.On thermal modeling of additive manufacturing processes[J]. CIRP J. Manuf. Sci. Technol., 2018, 20: 66
[18] Wei L C, Ehrlich L E, Powell-Palm M J, et al. Thermal conductivity of metal powders for powder bed additive manufacturing[J]. Addit. Manuf., 2018, 21: 201
[19] Guo Q L, Zhao C, Escano L I, et al.Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging[J]. Acta Mater., 2018, 151: 169
[20] Ma K K, Smith T, Lavernia E J, et al.Environmental sustainability of laser metal deposition: The role of feedstock powder and feedstock utilization factor[J]. Procedia Manuf., 2017, 7: 198
[21] Woll K, Gibbins J D, Slusarski K, et al.The utilization of metal/metal oxide core-shell powders to enhance the reactivity of diluted thermite mixtures[J]. Combust. Flame, 2016, 167: 259
[22] Hu Z Q, Qin X P, Shao T.Welding thermal simulation and metallurgical characteristics analysis in WAAM for 5CrNiMo hot forging die remanufacturing[J]. Procedia Eng., 2017, 207: 2203
[23] Pastras G, Fysikopoulos A, Chryssolouris G.A numerical approach to the energy efficiency of laser welding[J]. Int. J. Adv. Manuf. Technol., 2017, 92: 1243
[24] Wei H Y, Zhang Y, Tan L P, et al.Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption[J]. J. Cleaner Prod., 2015, 87: 255
[25] Chen J, Zhang Q L, Yao J H, et al.Study on laser absorptivity of metal material[J]. J. Appl. Opt., 2008, 29: 793(陈君, 张群莉, 姚建华等. 金属材料的激光吸收率研究[J]. 应用光学, 2008, 29: 793)
[26] Cesaretti G, Dini E, De Kestelier X, et al.Building components for an outpost on the lunar soil by means of a novel 3D printing technology[J]. Acta Astronaut., 2014, 93: 430
[27] Buchbinder G L, Galenko P K.Boundary conditions and heat resistance at the moving solid-liquid interface[J]. Physica, 2018, 489A: 149
[28] Silbernagel C, Ashcroft I, Dickens P, et al.Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors[J]. Addit. Manuf., 2018, 21: 395
[29] Casans S, Iakymchuk T, Rosado-Mu?oz A.High resistance measurement circuit for fiber materials: Application to moisture content estimation[J]. Measurement, 2018, 119: 167
[30] Yushkin A, Vasilevsky V, Khotimskiy V, et al.Evaluation of liquid transport properties of hydrophobic polymers of intrinsic microporosity by electrical resistance measurement[J]. J. Membr. Sci., 2018, 554: 346
[31] Gies S, Tekkaya A E.Analytical prediction of Joule heat losses in electromagnetic forming coils[J]. J. Mater. Process. Technol., 2017, 246: 102
[32] Maruyama S, translated by Wang S X, Zhang X R, et al. Heat Transfer [M]. Beijing: Peking University Press, 2011: 9, 10(圆山重直著, 王世学, 张信荣等译. 传热学 [M]. 北京: 北京大学出版社, 2011: 9, 10)
[33] Wu L, Graves J E, Cobley A J.Mechanism for the development of Sn-Cu alloy coatings produced by pulsed current electrodeposition[J]. Mater. Lett. , 2018, 217: 120
[34] Pena E M D, Roy S. Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives[J]. Surf. Coat. Technol., 2018, 339: 101
[35] Kumar A, Singh R K, Joshi H.Effect of transverse magnetic field on the laser-blow-off plasma plume emission in the presence of ambient gas[J]. Spectrochim. Acta, 2011, 66B: 444
[36] Kumar A, Joshi H C, Prahlad V, et al.Effect of magnetic field on laser-blow-off plasma plume: Structured temporal emission profile[J]. Phys. Lett., 2010, 374A: 2555
[1] 李红英 赵延阔 唐宜 王晓峰. 6082铝合金CCT图的测定及应用[J]. 金属学报, 2010, 46(10): 1237-1243.