Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1091-1098    
  论文 本期目录 | 过刊浏览 |
激光原位制备颗粒增强铁基复合涂层中碳化物相的形貌分析
吴朝锋; 马明星; 吴爱平; 刘文今; 钟敏霖; 张伟明; 张红军
1) 清华大学机械工程系先进成形制造教育部重点实验室; 北京 100084 2) 北京光电技术研究所; 北京 100010
MORPHOLOGIC CHARACTERISTICS OF IN SITU SYNTHESIZED CARBIDE PARTICLES IN LASER CLADDED Fe-BASED COMPOSITE COATINGS
WU Chaofeng;  MA Mingxing;  WU Aiping; LIU Wenjin; ZHONG Minlin; ZHANG Weiming; ZHANG Hongjun
1) Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2) Beijing Institute of Opto--Electronic Technology; Beijing 100010
引用本文:

吴朝锋 马明星 吴爱平 刘文今 钟敏霖 张伟明 张红军. 激光原位制备颗粒增强铁基复合涂层中碳化物相的形貌分析[J]. 金属学报, 2009, 45(9): 1091-1098.
, , , , , , . MORPHOLOGIC CHARACTERISTICS OF IN SITU SYNTHESIZED CARBIDE PARTICLES IN LASER CLADDED Fe-BASED COMPOSITE COATINGS[J]. Acta Metall Sin, 2009, 45(9): 1091-1098.

全文: PDF(1319 KB)  
摘要: 

通过Zr+Ti, Ti+WC以及Zr+Ti+WC的复合添加, 运用激光熔覆技术在中碳钢表面原位合成了颗粒增强铁基复合材料涂层, 研究了复合碳化物颗粒相的形貌特征. 结果表明, 当Zr+Ti复合添加时, 颗粒相具有包覆结构; 当Ti+WC复合添加时, 颗粒相易长大成花瓣状, 具有层状结构; 当Zr+Ti+WC复合添加时, 若WC含量较低, 颗粒相具有不规则多边形特征, 随着WC含量的增加, 颗粒相逐渐长大成花瓣状甚至粗大的树枝晶状. 通过热力学计算, 对复合碳化物的形成过程进行了讨论.

关键词 激光熔覆颗粒增强复合碳化物铁基复合涂层热力学    
Abstract

Particle reinforced metal matrix composite (PR-MMC) has attracted extensive investigation in material science and engineering. Laser depositing of MMC coatings containing in situ carbide particles is a research focus in laser surface processing field. Recent literatures have indicated that the particle size and distribution play an important role on the wear resistance of laser clad coatings. It is necessary to analyze the morphologic characteristics of the particles. In this paper, particle reinforced Fe-based composite coatings were produced by laser cladding Fe-based alloy powders containing Zr+Ti, Ti+WC and Zr+Ti+WC, respectively, on the surface of a medium carbon steel. The carbide particles were analyzed by XRD, SEM and TEM. The results show that during the growth of composited carbide particles, a type of surrounding structure, the inside part of the particle is (Zr, Ti)C while the peripheral part is (Ti, Zr)C, forms when 12%Zr and 3%Ti (mass fraction) are added. When 1%-5% Ti and 10\%WC are added, the particles present petal-like shape with layered structure. When Zr, Ti and WC (7%-10% of Zr and Ti) are added, the particles present irregular polygon shape as low content of WC (5%) added, but become petal-like or even dendrite shape when the content of WC is high (10%-15%). Although the particles have high content of W (30%-50%), they still have TiC structure. The formation mechanism is discussed based on thermodynamic calculations. It is indicated that different strong carbide-forming elements (SCFE) play different roles in the nucleation and growth of particles. Zr and Ti are important elements for particle nucleation. The concentration of W into the particle has a great influence on the growth of the particles. Therefore, the addition of WC can enlarge the particle size and decrease the amount of particles meanwhile. The above results are helpful to select the suitable proportion of SCFEs on laser cladding PR-MMC coatings.

Key wordslaser cladding    particle reinforcement    composited carbide    Fe-based composite coating    thermodynamics
收稿日期: 2009-02-10     
ZTFLH: 

TN249

 
基金资助:

国家科技部国际科技合作计划专项经费资助项目2007DFA50870

作者简介: 吴朝锋, 男, 1982年生, 博士生

[1] Yang S, Zhong M L, Liu W J. Mater Sci Eng, 2003; A343: 57
[2] Park H, Nakata K, Tomida S. J Mater Sci, 2000; 35: 747
[3] Singh A, Dahotre N B. J Mater Sci, 2004; 39: 4553
[4] Zhang Q M, He J J, Liu W J, Zhong M L. Laser Technol, 2003; 27: 81
(张庆茂, 何金江, 刘文今, 钟敏霖. 激光技术, 2003; 27: 81)

[5] Dubourg L, Ursescu D, Hlawka F, Cornet A. Wear, 2005; 258: 1745
[6] Hans B, Birgit W. Wear, 2001; 251: 1386
[7] Chen Y, Wang H M. Rare Met Mater Eng, 2003; 32: 840
(陈瑶, 王华明. 稀有金属材料与工程, 2003; 32: 840)

[8] Wang F, Mei J, Jiang H, Wu X. Mater Sci Eng, 2007; A445–446: 461
[9] Van Acker K, Vanhoyweghen D, Persoons R, Vangrunderbeek J. Wear, 2005; 258: 194
[10] Ma M X, Liu W J, Zhong M L, Wu C F, Zhang W M, Zhang H J. Chin J Lasers, 2007; 34(Suppl.): 1
(马明星, 刘文今, 钟敏霖, 吴朝锋, 张伟明, 张红军. 中国激光, 2007; 34(增刊): 1)

[11] Zhang J Y, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J. Heat Treat Met, 2003; 28: 1
(张锦英, 马明星, 刘文今, 钟敏霖, 张伟明, 张红军. 金属热处理, 2003; 28: 1)

[12] Ma M X, Liu W J, Zhong M L, Zhu Y H, Wang H L, Zhang W M, Zhang H J. Appl Laser, 2006; 26: 145
(马明星, 刘文今, 钟敏霖, 朱有慧, 王海龙, 张伟明, 张红军. 应用激光, 2006; 26: 145)

[13] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J. Mater Lett, 2008; 62: 3077
[14] Yoon B K, Lee B A, Kang S J L. Acta Mater, 2005; 53: 4677
[15] Wang Z K, Zheng Q G, Tao Z Y, Ye H Q, ChenQM. Acta Metall Sin, 1999; 35: 1027

(王忠柯, 郑启光, 陶曾毅, 叶和清, 陈清明. 金属学报, 1999; 35: 1027)

[16] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J. In: Laser Institute of America, ed., Proceedings of Pacific International Conference on Application of Lasers and Optics 2008, Orlando: Laser Institute of America, 2008: 488
[17] Ye D L. Utility Inorganic Materials Thermodynamics Data Handbook. 2nd ed, Beijing: Metallurgy Industry Press, 2002: 374, 1051, 1156, 1204
(叶大伦. 实用无机物热力学数据手册(第二版). 北京: 冶金工业出版社, 2002: 374, 1051, 1156, 1204)

[18] Liu N, Hu Z H, Cui K. Acta Mater Compos Sin, 1996; 13: 39
(刘宁, 胡镇华, 崔昆. 复合材料学报, 1996; 13: 39)

[19] Swain M V, Translated by Guo J K, Tian S B, Huang X X, Shi Y, Sun W Y, Jiang D L, Zhang Y F, Lai T R, Shi J L, Tan S H, Zhao M Y, Feng C D, Huang Z Z. Mater Sci Technol (Vol.11): Structure and Properties of Ceramics. Bejjing: Beijing Science and Technology Press, 1998: 162
(Swain M V著, 郭景坤, 田顺宝, 黄校先, 施鹰, 孙维莹, 江东亮, 张玉峰, 来亭荣, 施剑林, 谭寿洪, 赵梅瑜,
冯楚德, 黄仲臧译. 材料科学与技术丛书(第11卷): 陶瓷的结构与性能. 北京: 科学出版社, 1998: 162)

[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[5] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[6] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[7] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[8] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[9] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[11] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[12] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[13] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[14] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[15] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.