Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1070-1076    
  论文 本期目录 | 过刊浏览 |
高速GMAW驼峰焊道形成过程的数值分析
陈姬; 武传松
山东大学材料连接技术研究所; 济南 250061
NUMERICAL SIMULATION OF FORMING PROCESS OF HUMPING BEAD IN HIGH SPEED GMAW
CHEN Ji; WU Chuansong
Institute for Materials Joining; Shandong University; Jinan 250061
引用本文:

陈姬 武传松. 高速GMAW驼峰焊道形成过程的数值分析[J]. 金属学报, 2009, 45(9): 1070-1076.
. NUMERICAL SIMULATION OF FORMING PROCESS OF HUMPING BEAD IN HIGH SPEED GMAW[J]. Acta Metall Sin, 2009, 45(9): 1070-1076.

全文: PDF(1339 KB)  
摘要: 

基于高速气体金属电弧焊(GMAW)驼峰焊道形成过程的实验观测结果, 充分考虑熔池中后向液体流的动量和热焓, 在熔池表面变形方程中加入后向液体流的动能项, 并将熔滴热焓分布在整个熔池表面层, 建立了高速GMAW驼峰焊道形成过程的数值分析模型. 模拟了一定焊接条件下的驼峰焊道形成过程及其三维形状与尺寸, 与实测结果进行了对比, 证明本文模型能够较好地模拟高速GMAW过程, 可定量分析驼峰焊道形成过程.

关键词 焊接 高速GMAW驼峰焊道数值分析    
Abstract

High speed GMAW (gas metal arc welding) is an effective way to improve the welding productivity, however, its application is usually limited by the occurrence of several weld bead defects, such as humping bead. Based on the experimental results, a mathematical model is developed to analyze the forming mechanism of humping bead for high speed GMAW through considering both the momentum and heat content of the backward flowing molten jet in weld pools. One term related to the momentum of backward jet is added to the equation of weld pool surface deformation, and the heat content of overheated droplets is distributed within the layer covering the whole pool.  The humping bead forming process and its dimension and 3D geometry are numerically simulated, and compared with the experimental measurement under some welding conditions. It is found that the model can describe and characterize the humping formation in high speed GMAW quantitatively.

Key wordswelding    high-speed GMAW    humping weld bead    numerical simulation
收稿日期: 2008-12-08     
ZTFLH: 

TG444

 
基金资助:

国家自然科学基金项目50675119和高等学校博士学科点专项科研基金项目20050422027资助

作者简介: 陈姬, 男, 1982年生, 博士生

[1] Ueyama T, Ohnawa T, Yamazaki K, Tanaka M, Ushio M,
Nakata K. Trans JWRI, 2005; 34: 11
[2] Bradstreet B J. Weld J, 1968; 47: 314
[3] Gratzke U, Kapadia P D, Dowden J, Kroos J, Simon G. J
Phys, 1992; 25D: 1640
[4] Mendez P F, Eager T W. Weld J, 2003; 82: 296
[5] Nguyen T C, Weckman D C, Johnson D A. Sci Technol
Weld Join, 2005; 10: 447
[6] Hu Z K, Wu C S. Acta Metall Sin, 2008; 44: 119
(胡志坤, 武传松. 金属学报, 2008; 44: 119)
[7] Hu Z K, Wu C S. Chin Weld, 2008; 17(2): 15
[8] Wu C S. Welding Thermal Processes and Weld Pool Behaviors.
Beijing: Machinery Press, 2008: 110
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 110)
[9] Wu C S, Dorn L. Acta Metall Sin, 1997; 33: 774
(武传松, Dorn L. 金属学报, 1997; 33: 774)
[10] Wu C S, Chen J, Zhang Y M. Comput Mater Sci, 2007;
39: 635
[11] Jost J, Li–Jost X. Calculus of Variation. Cambridge:
Cambridge University Press, 1998: 20
[12] Cho M H. PhD Thesis. Ohio State University, Columbus,
USA, 2006: 79
[13] Cao Z N, Dong P. Trans ASME, 1998; 120H: 31

[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
[4] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[5] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[7] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[10] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[11] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[12] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[13] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[14] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[15] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.