Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 897-905    
  论文 本期目录 | 过刊浏览 |
从相变出发理解和计算变体间位向差
吴静;张文征
清华大学材料科学与工程系; 先进材料实验室; 北京 100084
THE UNDERSTANDING AND CALCULATION OF MISORIENTATION BETWEEN VARIANTS BASED ON THE PHASE TRANSFORMATION
WU Jing; ZHANG Wenzheng
Laboratory of Advanced Materials; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

吴静 张文征 . 从相变出发理解和计算变体间位向差[J]. 金属学报, 2009, 45(8): 897-905.
, . THE UNDERSTANDING AND CALCULATION OF MISORIENTATION BETWEEN VARIANTS BASED ON THE PHASE TRANSFORMATION[J]. Acta Metall Sin, 2009, 45(8): 897-905.

全文: PDF(951 KB)  
摘要: 

本文从相变出发, 结合母相对称性建立相变与变体位向差之间的定量联系, 详细介绍了如何计算相变矩阵和以之为基础的变体间位向差, 并以fcc→bcc相变系统为例, 运用相变矩阵和对称操作矩阵计算了N--W位向关系下变体间位向差, 结果与前人从位向关系出发计算结果一致. 本文方法有助于理解位向差的成因, 特别有助于开展对无理位向关系引起的变体间位向差的分析. 文中还进一步运用点群理论讨论了立方系N--W, K--S, Bain位向关系下独立存在的变体数目, 并且推导了相变矩阵与位向关系矩阵之间的转换关系.

关键词 变体 相变晶体学 对称性 位向关系    
Abstract

Misorientation between crystalline grains generated from a solid state phase transformation can be understood according to the orientation relationship (OR) between the parent and product phases, when such an OR is reproducible and unique. Due to the symmetry of the parent phase, the product phase can be related to the parent phase by various crystallographically equivalent variants of the same OR. When a pair of product particles with different variants meet at a grain boundary, the misorientation between the adjacent grains can be determined based on the OR and the symmetry of the parent phase. Misorientations for ideal rational ORs of phase transformations in some systems have been tabulated in literatures, and also, irrational ORs have been reported, with an increasing tendency because of the improvement of measurement technologies. This paper describes in details how to calculate the misorientation of different variants with a general OR. It starts from constructing the transformation matrix for the phase transformation with a rational or irrational OR, from either measurements or calculations. By applying the symmetry operators in the parent phase with the matrix manipulation, the misorientations between different variants have been derived. Since the misorentations are due to the symmetry of the parent phase, the determined values of misorientation nles between different vriants are firstly independent of the OR, but the misorientations axes are dependent on the OR. Nevertheless, the final results of the minimum rotation angles usually vary with the OR when the symmetry of the product phase is taken into consideration to derive misorientation angle/axis. The present approach elaborates the quantitative relationship between the OR of a phase transformation and the misorientation between product particles of different variants. It contributes to a better understanding of the cause of the misorientation, and provides simple formulas to determine the misorientations for a general OR. For simplicity, an example of applications of the present approach is given to an fcc→bcc phase transformation system with the N–W OR. The calculated results are consistent with thosgot from othr approaches. In additin, the nuber of indepndent variants with different ORs, such as the N–W, K–S, Bain ORs in the fcc/bcc system is analyzed, by following Cahn and Kaloji approacof uperimposing point groups of te parent and product phases. The relationship betweethe transformation matrix, the orintation relationship matrix and the correspondinmatrix in cuic systems is also discussed.

Key wordsvariant    crystalloraphy of phase transformation    smmetry    orientation relationship
收稿日期: 2009-01-05     
ZTFLH: 

O71

 
基金资助:

国家自然科学基金资助项目50671051

作者简介: 吴静, 女, 苗族, 1983年生, 博士生

[1] Furuhara T, Maki T. Mater Sci Eng, 2001; A312: 145
[2] Gey N, Humbert M, Gautier E, Bechade J L. J Nucl Mater, 2004; 328: 137
[3] Glavicic M G, Kobryn P A, Semiatin S L. Mater Sci Eng, 2004; A385: 372
[4] Stanford N, Bate P S. Acta Mater, 2004; 52: 5215
[5] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26
[6] Guo Z, Morris Jr J W. Scr Mater, 2005; 53: 933
[7] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Mater, 2006; 54: 5323
[8] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[9] Kitahara H, Ueji R, Ueda M. Mater Charact, 2005; 54: 378
[10] Humbert M, Wagner F, Moustahfid H, Esling C. J Appl Crystallogr, 1995; 28: 571
[11] Gey N, Humbert M. J Mater Sci, 2003; 38: 1289
[12] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A346: 50
[13] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A351: 258
[14] Karthikeyan T, Saroja S, Vijayalakshmi M. Scr Mater, 2006; 55: 771
[15] Cayron C, Artaud B, Briottet L. Mater Charact, 2006; 57: 386
[16] Cayron C. Acta Crystallogr Sect, 2006; 62A: 21
[17] Morito S, Tanaka H, Furuhara T, Maki T. In: Sakata T eds, The Fourth International Conference on Recrystallization and Related Phenomena, Japan: The Japan Institute of Metals, 1999: 295
[18] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789
[19] Zhang W Z, Purdy G R. Acta Metall, 1993; 41: 543
[20] Ye F, Zhang W Z, Qiu D. Acta Mater, 2004; 52: 2449
[21] Qiu D, Zhang W Z. In: Johnson W C, Howe J M eds, Proceeding of an International Conference on Solid–Solid Phase Transformations in Inorganic Materials, Phenix: Warrendale, 2005: 123
[22] Wayman C M. Introduction to the Crystallography of Martensitic Transformations. New York: Macmillan, 1964: 134
[23] Nolze G. Cryst Res Technol, 2008; 43: 61
[24] Bowles J S, Mackenzie J K. Acta Metall, 1954; 2: 129
[25] Wechsler M S, Lieberman D S, Read T A. Trans AIME, 1953; 197: 1503
[26] Bollmann W. Crystal Defects and Crystalline Interfaces. Berlin: Springer, 1970: 254
[27] Zhang W Z, Purdy G R. Philos Mag, 1993; 68A: 279
[28] Zhang W Z, Weatherly G C. Prog Mater Sci, 2005; 50: 181
[29] Qiu D, Zhang W Z. Philos Mag, 2003; 83A: 3093
[30] Wu J, Zhang W Z, Gu X F. Acta Mater, 2009; 57: 635
[31] Zhang W Z, Purdy G R. Philos Mag, 1993; 68A: 291
[32] Bollmann W. Crystal Lattices, Interfaces, Matrices. Geneva: Bollmann, 1982: 360
[33] Christian J W. The Theory of Transformation in Metals and Alloys. 3rd Ed., Oxford: Pergamon Press, 2002: 586
[34] Altmann S L, Bradley C J. Philos Trans R Soc, 1963; 255A: 199
[35] Frank F C. Metall Mater Trans, 1988; 19A: 403
[36] Bradley C J, Cracknell A P. The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, 1972: 37
[37] Cahn J W, Kalonji G M. In: Aaronson H I eds, Proceedings of an International Conference on Solid–Solid Phase Transformations, Pittsburgh: AIME Press, 1982: 3

[1] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[2] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[3] 刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
[4] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[5] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[6] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[7] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[8] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[9] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[10] 林金保,任伟杰,王心怡. 挤压态ZK60镁合金室温拉-压不对称性研究*[J]. 金属学报, 2016, 52(3): 264-270.
[11] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
[12] 周欢, 张铁邦, 吴泽恩, 胡锐, 寇宏超, 李金山. 间隙原子C作用下TiAl合金中析出相的形成及演变规律*[J]. 金属学报, 2014, 50(7): 832-838.
[13] 刘庆华,黄裕金,刘剑,胡侨丹,李建国. Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向[J]. 金属学报, 2013, 29(4): 391-398.
[14] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[15] 王西霞,郭晖, 王鼎, 白银, 杨善武, 贺信莱. Fe-C-Mn-Si钢中奥氏体共格孪晶界对贝氏体铁素体变体选择的影响[J]. 金属学报, 2012, 48(4): 385-392.