Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 873-879    
  论文 本期目录 | 过刊浏览 |
超细晶铜在退火与高温变形条件下微观结构的不稳定性研究
姜庆伟1;刘印1;王尧1;晁月盛1;李小武1;2
1) 东北大学理学院材料物理与化学研究所; 沈阳 110004
2) 东北大学材料各向异性与织构教育部重点实验室; 沈阳 110004
MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING
JIANG Qingwei1; LIU Yin1; WANG Yao1; CHAO Yuesheng1; LI Xiaowu1;2
1) Institute of Materials Physics and Chemistry; College of Sciences; Northeastern University; Shenyang 110004
2) Key Laboratory for Anisotropy and Texture of Materials; Ministry of Education; Northeastern University;  Shenyang 110004
引用本文:

姜庆伟 刘印 王尧 晁月盛 李小武. 超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J]. 金属学报, 2009, 45(7): 873-879.
, , , , . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. Acta Metall Sin, 2009, 45(7): 873-879.

全文: PDF(1507 KB)  
摘要: 

通过差示扫描量热仪(DSC)和显微硬度测试研究了等通道转角挤压(ECAP)制备的超细晶铜在退火条件下的热稳定性和硬度变化, 同时利用扫描电镜电子通道衬度(SEM--ECC)技术和透射电镜(TEM)研究了超细晶铜在室温到300 ℃的温度范围内分别在单向压缩和循环变形后的微观结构变化. 结果表明: 超细晶铜即使在低于再结晶温度退火条件下也会以缓慢渐进的方式发生逐步的再结晶和晶粒粗化, 该结构软化过程通过DSC随退火时间的响应曲线探测不到. 高温压缩下晶粒的粗化行为与应变速率有关, 应变速率越大, 粗化的局部化越明显; 应变速率越小, 更多的晶粒发生整体粗化. 高温循环加载促使晶粒粗化发生得更为显著、均匀, 在粗化的晶粒内可观察到一些典型的位错组态, 如墙结构和胞结构等. 另外, 利用最大晶粒尺度(Dmax)与平均晶粒尺度(Daver)的比值V定量讨论了不同高温变形情况下晶粒粗化的不均匀性.

关键词 超细晶铜循环变形单向压缩温度微观结构晶粒粗化    
Abstract

The thermal stability and hardness behavior of ultrafine--grained (UFG) copper produced by equal channel angular pressing (ECAP) under the condition of annealing were studied by differential scanning calorimeter (DSC) and micro--hardness tests, and the microstructural changes of this material under uniaxial compression or cyclic deformation at temperatures ranging from room temperature to 300 ℃ were examined by electron channeling contrast (ECC) technique in scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). It was found that under annealing even at a certain temperature below recrystallization temperature, UFG copper would exhibit a structural evolution, i.e., recrystallization and grain coarsening, the process of which may happen gradually at a low developing rate, so that the DSC response curve as a functional of annealing time cannot detect such a process. The grain coarsening behavior of UFG copper under high--temperature compression is related to the strain rate, i.e., the higher the strain rate, more remarkable the localization of grain coarsening becomes; the lower the strain rate, many more grains become coarsened integrally. Comparatively speaking, the grain coarsening induced by high--temperature cyclic deformation takes place more notably and uniformly, and some typical dislocation arrangements, like dislocation walls and dislocation cells etc., can be observed in some coarsened grains. Also, the inhomogeneity of grain coarsening under high--temperature deformation was quantitatively discussed in terms of a ratio V of maximum grain size (Dmax) to average grain size (Daver), which is available for the coarsened grains.

Key wordsUFG copper    cyclic deformation    uniaxial compression    temperature    microstructure    grain coarsening
收稿日期: 2009-09-24     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金项目50671023和教育部新世纪优秀人才支持计划项目NCET--07--0162资助

作者简介: 姜庆伟, 男, 1978年生, 博士生

[1] Segal V M. Mater Sci Eng, 1995; A197: 157
[2] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[3] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[4] Vinogradov A, Kaneko Y, Kitagawa K, Hashimato S, Stolyarov Y, Valiev R. Scr Mater, 1997; 36: 1345
[5] Agnew S R, Weertman J R. Mater Sci Eng, 1998; A244: 145
[6] Wu S D, Wang Z G, Jiang C B, Li G Y. Philos Mag Lett, 2002; 82: 559
[7] Wu S D,Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[8] Vinogradov A Y, Stolyarov V V, Hashimoto S, Valiev R Z. Mater Sci Eng, 2001; A318: 163
[9] Mughrabi H, H¨oppel H W, Kautz M. Scr Mater, 2004; 51: 807
[10] Molodova X, Gottstein G, Winning M, Hellmig R J. Mater Sci Eng, 2007; A460–461: 204
[11] Li X W, Umakoshi Y, Wu S D, Wang Z G, Alexandrov I V, Valiev R Z. Phys Stat Sol, 2004; A201: 119
[12] Li X W, Wu S D, Wu Y, Yasuda H Y, Umakoushi Y. Adv Eng Mater, 2005; 7: 829
[13] Furukawa M, Iwahashi Y, Hotita Z, Nemoto M, Langdon T G. Mater Sci Eng, 1998; A257: 328
[14] Amouyal Y, Divinski S, Klinger L, Rabkin E. Acta Mater, 2008; 56: 5500
[15] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffus Forum, 2001; 188–190: 153
[16] Mughrabi H, Wang R. In: Hansen N, Horsewell A, Leffers T, Lilholt H eds., Proc 2nd Risφ Int Symp on Metallurgy and Materials Science, Roskilde: Risφ National Laboratory, 1981: 87
[17] Zhang J S. High–Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 29
(张俊善著. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 29)

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[7] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[8] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[9] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[10] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[11] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[12] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[13] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[14] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[15] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.