Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 788-800    
  论文 本期目录 | 过刊浏览 |
金属材料疲劳损伤的界面效应
张哲峰; 张鹏;  田艳中; 张青科; 屈伸; 邹鹤飞; 段启强; 李守新; 王中光
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS
ZHANG Zhefeng; ZHANG Peng; TIAN Yanzhong; ZHANG Qingke; QU Shen; ZOU Hefei; DUAN Qiqiang; LI Shouxin; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

张哲峰 张鹏 田艳中 张青科 屈伸 邹鹤飞 段启强 李守新 王中光. 金属材料疲劳损伤的界面效应[J]. 金属学报, 2009, 45(7): 788-800.
, , , , , , , , . INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS[J]. Acta Metall Sin, 2009, 45(7): 788-800.

全文: PDF(2306 KB)  
摘要: 

总结了不同金属材料在低周疲劳过程中典型的晶界、孪晶界、相界和微电子互连界面的损伤开裂行为. 纯Cu中疲劳裂纹萌生的难易顺序为: 小角度晶界、驻留滑移带和大角度晶界. 对于纯Cu与铜合金中退火孪晶界, 是否萌生疲劳裂纹与合金成分有关, 随合金元素的加入降低了层错能, 退火孪晶界相对容易萌生疲劳裂纹. 对于Cu--Ag二元合金, 由于存在不同的晶界和相界面, 是否萌生疲劳裂纹取决于界面两侧晶体的取向差, 通常两侧取向差大的界面容易萌生疲劳裂纹. 在微电子互连界面中, 疲劳裂纹萌生位置与焊料成分和时效时间有关,对于Sn--Ag/Cu互连界面, 疲劳裂纹通常沿焊料与界面化合物结合处萌生; 对于Sn--Bi/Cu互连界面, 随时效时间增加会出现明显的由于Bi元素偏聚造成的界面脆性.

关键词 晶界孪晶界相界互连界面疲劳裂纹    
Abstract

Interfacial fatigue cracking behaviors along large--angle grain boundaries (GBs), twin boundaries (TBs), phase boundaries (PBs) and joint interfaces in metallic materials were summarized. It is found that the resistance to fatigue crack initiation decreases in the order of low--angle GBs, persistent slip bands and the large--angle GBs in pure Cu. For annealing TBs, fatigue cracking initiation strongly depends on the stacking fault energy (SFE) in Cu alloys. With decreasing SFE, fatigue cracking along TBs becomes easy. In Cu--Ag binary alloys, the misorientation across GBs or PBs plays an important role in the fatigue cracking, and large misorientation often makes the final fatigue cracking. For the Cu/solder joint interface, the interfacial fatigue cracking modes are affected by the solders and aging time. In Sn--Ag/Cu solder joints, fatigue crack normally nucleates along the interface between the Sn--Ag solder and the intermetallics compounds (IMCs); however, for Sn--Bi/Cu solder joints, brittle interfacial fatigue cracking always occurs along the interface between Cu and the IMCs due to the Bi segregation after aging for a long time.

Key wordsgrain boundary    twin boundary    phase boundary    interconnect interface    fatigue cracking
收稿日期: 2009-04-01     
ZTFLH: 

TG111.8

 
基金资助:

国家自然科学基金项目50571104和50890173, 国家杰出青年科学基金项目50625103及中国科学院“百人计划”项目资助

作者简介: 张哲峰, 男, 1970年生, 研究员, 博士

[1] Suresh S, translated by Wang Z G, et al. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 1
(Suresh S 著; 王中光, 等译. 材料的疲劳. 北京: 国防工业出版社, 1999: 1)
[2] Albert W A J. Arch Mineral, Geognosie, Bergbau Huttenkunde, 1838; 10: 215
[3] Ewing J A, Humfrey J C. Philos Trans R Soc London, 1903; 200A: 241
[4] Schmid E, Boas W. Plasticity of Crystals. London: Chapman and Hall, 1968: 1
[5] Seeger A. Dislocation and Mechanical Properties of Crystals. New York: John Wiley, 1957: 1
[6] Honeycombe RWK. Plastic Deformation of Metals. London: Cambridge Press, 1969: 1
[7] Klesnil M, Lukas P. Fatigue of Materials. 3rd Ed., Amsterdam: the Netherlands, 1992: 1
[8] Thompson N,Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[9] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; 44: 405
[10] Basinski Z S, Pascual R, Basinski S J. Acta Metall, 1983; 31: 591
[11] Hunsche A, Neumann P. Acta Metall, 1986; 34: 207
[12] Kim W K, Laird C. Acta Metall, 1978; 26: 789
[13] Liu W, Bayerlein M, Mughrabi H, Day A, Quested P N. Acta Metall Mater, 1992; 40: 1763
[14] Watanabe T. Res Mech, 1984; 11: 47
[15] Watanabe T, Fujii H, Oikawa H, Arai K I. Acta Metall, 1989; 37: 47
[16] Aust KT, Erb U, Palumbo G. Mater Sci Eng, 1994; A176: 329
[17] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685
[18] Adams B L, Zhao JW, Ohara D. Acta Metall Mater, 1990; 38: 953
[19] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[20] Shen Y F, Lu L, Lu K. Scr Mater, 2005; 52: 989
[21] Zhang Z F, Wang Z G. Mater Sci Eng, 1999; A271: 449
[22] Hu Y M, Wang Z G. Scr Mater, 1996; 34: 1019
[23] Zhang Z F, Wang Z G, Li S X. Fatigue Fract Eng Mater Struct, 1998; 21: 1307
[24] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 367
[25] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A269: 136
[26] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[27] Zhang Z F, Li X W, Su H H, Wang Z G. J Mater Sci Technol, 1998; 14: 211
[28] Zhang Z F, Wang Z G, Eckert J. J Mater Res, 2003; 18: 1031
[29] Figueroa J C, Laird C. Mater Sci Eng, 1983; 60: 45
[30] Huang H L, Ho N J. Mater Sci Eng, 2000; A293: 7
[31] Mughrabi H, Ackermann F, Herz K. ASTM STP, 1983; 811: 5
[32] Polak J, Liskutin P. Fatigue Fract Eng Mater Struct, 1990; 13: 119
[33] Polak J, Vasek A, Obrtlik K. Fatigue Fract Eng Mater Struct, 1996; 19: 147
[34] Boettner R C, McEvily A J, Liu Y C. Philos Mag, 1964; 10: 95
[35] Zhang P, Duan Q Q, Li S X, Zhang Z F. Philos Mag, 2008; 88: 2487
[36] Qu S, Zhang P, Wu S D, Zang Q S, Zhang Z F. Scr Mater, 2008; 59: 1131
[37] Hirth J P, Lothe J. In: Hirth J P, Lothe J eds., Theory of Dislocations, 2nd Ed., New York: John Wiley and Sons Inc., 1982: 306
[38] Murr L E. In: Murr L E ed., Interfacial Phenomena in Metals and Alloys, MA: Addison–Wesley Publishing Company, 1975: 145
[39] Han K, Vasquez A A, Xin Y, Kalu P N. Acta Mater, 2003; 51: 767
[40] Rao G, Howe J M, Wynblatt P. Scr Metall Mater, 1994; 30: 731
[41] Tian Y Z, Zhang Z F. Mater Sci Eng, 2009; A508: 206
[42] Stolarz J, Madelaine–Dupuich O, Magnin T. Mater Sci Eng, 2001; A299: 275
[43] Lefranc P, Doquet V, Gerland M, Sarrazin–Baudoux C. Acta Mater, 2008; 56: 4450
[44] Motoyashiki Y, Br¨uckner–Foit A, Sugeta A. Eng Fract Mech, 2008; 75: 768
[45] Alvarez–Armas I, Marinelli M C, Malarr´?a J A, Degallaix S, Armas A F. Int J Fatigue, 2007; 29: 758
[46] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[47] Zhang Q K, Zou H F, Zhang Z F. J Electronic Mater, 2009, in press
[48] Zhu Q S, Zhang Z F, Shang J K, Wang Z G. Mater Sci Eng, 2006; A435–436: 588
[49] Zou H F, Zhang Q K, Zhang Z F. Scr Mater, 2009; 61: 308
[50] Lee H T, Chen M H, Jao H M, Liao T L. Mater Sci Eng, 2003; A358: 134
[51] Zhang Q K, Zhang Z F. J Alloy Compd, 2009, under review [52] Glazer J. Inter Mater Rev, 1995; 40(2): 65
[53] Zhu Q S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(祝清省. 中国科学院金属研究所博士毕业论文, 沈阳, 2008)[54] Liu P L, Shang J K. Scr Mater, 2001; 44: 1019
[55] Liu P L, Shang J K. J Mater Res, 2001; 16: 1651
[56] Zou H F, Zhang Q K, Tian Y Z, Zhang Z F. J Appl Phys, received

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[9] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[10] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[13] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[14] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[15] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.