Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 641-646    
  论文 本期目录 | 过刊浏览 |
中低应变量冷轧AA1050铝合金中晶粒取向与形变位错界面的演变
刘庆1;2; 姚宗勇1; A. Godfrey1;  刘伟1
1. 清华大学材料科学与工程系; 北京 100084
2. 重庆大学材料科学与工程学院; 重庆 400044
EVOLUTIONS OF GRAIN ORIENTATION AND DISLOCATION BOUNDARY IN AA1050 ALUMINUM ALLOY DURING COLD ROLLING FROM LOW TO MEDIUM STRAINS
LIU Qing 1;2; YAO Zongyong 1; A. Godfrey 1; LIU Wei1
1. Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
2. School of Materials Science and Engineering; Chongqing University; Chongqing 400044
引用本文:

刘庆 姚宗勇 A. Godfrey 刘伟. 中低应变量冷轧AA1050铝合金中晶粒取向与形变位错界面的演变[J]. 金属学报, 2009, 45(6): 641-646.
, , , . EVOLUTIONS OF GRAIN ORIENTATION AND DISLOCATION BOUNDARY IN AA1050 ALUMINUM ALLOY DURING COLD ROLLING FROM LOW TO MEDIUM STRAINS[J]. Acta Metall Sin, 2009, 45(6): 641-646.

全文: PDF(12328 KB)  
摘要: 

采用ECC和EBSD技术研究了AA1050铝合金冷轧至中低应变量下位错界面结构的演变. 结果表明, 冷轧至中低应变量下形成典 型的位错胞块结构,其微观组织结构强烈依赖于晶粒的取向. 变形后主要形成三种典型的组织结构: Type A------两组交叉的几何必须位错界面 (GNBs) 结构,Type B------一组GNBs结构, Type C------近似等轴的普通胞状结构. 绝大多数Copper, Brass和Goss取向的晶粒具有Type A结构, S取向的晶粒具有Type B结构, 而Cube取向的晶粒主要具有Type C结构. 变形过程中的GNBs不仅具有与RD成±(30°---40°) 的宏观取向, 而且大多数GNBs位错界面近似平行于由最大Schmid因子所确定的{111}滑移面的迹线.

关键词 铝合金冷轧电子背散射衍射 位错界面结构    
Abstract

The dislocation boundary structure evolution in AA1050 aluminum alloy during cold rolling from low to medium strains was investigated using electron channeling contrast (ECC) imaging and the electron backscattered diffraction (EBSD) techniques. The results show that the grains are subdivided into a typical cell--block structure and there is a strong correlation between deformation microstructure and grain orientation. Based on the characterizations of grain subdivision and dislocation boundary structure, grains can be classified into three types: Type A---grains containing two sets of geometrically necessary boundaries (GNBs), Type B---grains containing one set of GNBs, and Type C---grains consisting of large dislocation cells structure. Most of grains with Copper, Brass and Goss orientations have Type A microstructure; grains with S orientation have Type B microstructure, grains with Cube orientation have Type C microstructure. The alignment of the extended dislocation boundaries depends strongly on the grain orientation. In most grains the boundaries have inclination angles of ±(30°---40°) to rolling direction (RD), and are approximately parallel to the traces of the most active {111} slip planes as identified by a Schmid factor analysis.

Key wordsaluminum alloy    cold rolling    electron backscattered diffraction (EBSD)    dislocation boundary structure
收稿日期: 2008-11-26     
ZTFLH: 

TG335.12

 
基金资助:

国家自然科学基金资助项目50231030和50571051

作者简介: 刘庆, 男, 1964年生, 教授, 博士

[1] Kuhlmann–Wilsdorf D, Hansen N. Scr Metall Mater,1991; 25: 1557
[2] Liu Q, Hansen N. Scr Metall Mater, 1995; 32: 1289
[3] Liu Q, Juul Jensen D, Hansen N. Acta Mater, 1998; 46:5819
[4] Liu Q, Hansen N. Phys Status Solidi, 1995; 149A: 187
[5] Hansen N. Metall Mater Trans, 2001; 32A: 2917
[6] Hughes D A, Liu Q, Chrzan D C, Hansen N. Acta Mater,1997; 45: 105
[7] Godfrey A, Hughes D A. Acta Mater, 2000; 48: 1897
[8] Huang X, Winther G. Philos Mag, 2007; 87: 5189
[9] Winther G, Huang X. Philos Mag, 2007; 87: 5215
[10] Huang X, Hansen N. Scr Mater, 1997; 37: 1
[11] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[12] Hansen N, Huang X, Winther G. Mater Sci Eng, 2008;A494: 61
[13] Yang P, Li C M, Liu D M, Huang M, Li M, Meng L. Mater Sci Technol, 2005; 21: 1444
[14] Wu G L, Liu W, Godfrey A, Liu Q. Acta Metall Sin, 2004; 40: 699
(吴桂林, 刘伟, Godfrey A, 刘 \ \ 庆. 金属学报, 2004; 40: 699)
[15] Mao W M, Jiang H, Yang P, Feng H, Yu Y. Mater Sci Technol, 2005; 21: 1383
[16] Li X L, Liu W, Godfrey A, Juul Jensen D, Liu Q. Acta Mater, 2007; 55: 3531
[17] Li Z J, Godfrey A, Liu Q. Acta Mater, 2004; 52: 149
[18] Yao Z Y, Liu Q, Godfrey A, Liu W. J Chin Electron Microsc Soc, 2008; 27: 452
(姚宗勇, 刘 庆, Godfrey A, 刘 伟. 中国电子显微学报, 2008; 27: 452)
[19] Hughes D A, Hansen N. Metall Trans, 1993; 24A: 2021
[20] Liu Q, Maurice C, Driver J, Hansen N. Metall Mater Trans, 1998; 29A: 2333
[21] Daaland O, Nes E. Acta Mater, 1996; 44: 1389
[22] Humphreys F J, Bate P S, Acta Mater, 2006; 54: 817
[23] Humphreys F J, Bate P S, Acta Mater, 2007; 55: 5630
[24] Winther G. Acta Mater, 2003; 51: 417
[25] Winther G, Huang X, Godfrey A, Hansen N. Acta Mater, 2004; 52: 4437

[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[5] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[8] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[9] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[10] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[11] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[12] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[13] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[14] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[15] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.