Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1297-1302    
  论文 本期目录 | 过刊浏览 |
回火马氏体中合金碳化物的3D原子探针表征 III. 粗化
刘庆冬1; 2); 褚于良1); 彭剑超1); 刘文庆1); 周邦新1)
1) 上海大学分析测试中心; 上海 200444
2) 江苏省(沙钢)钢铁研究院; 苏州 215625
3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE  III. Coarsening
LIU Qingdong1; 2);  CHU Yuliang1);  PENG Jianchao1);   LIU Wenqing1);   ZHOU Bangxin1)
1) Instrumental Analysis & Research Center; Shanghai University; Shanghai 200444
2) Institute of Research of Iron and Steel; Jiangsu Province and Sha-Steel; Suzhou 215625
引用本文:

刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.
, , , . 3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE  III. Coarsening[J]. Acta Metall Sin, 2009, 45(11): 1297-1302.

全文: PDF(1353 KB)  
摘要: 

Nb-V微合金钢在1200 ℃固溶0.5 h后淬火, 在650 ℃回火4 h, 利用SEM和HRTEM 观察显微组织、合金碳化物的形貌特征和精细结构, 用三维原子探针(3DAP)研究合金碳化物中元素分布规律. 结果表明, 淬火微合金钢在650 ℃回火4 h后, 马氏体板条内位错和板条界面因回复而消失, 粗化的合金碳化物分布在原马氏体板条界面和板条内部. 同时, 伴随着合金元素的再分配, 早期析出的圆盘状碳化物沿厚度方向生长, 出现一个与基体 (Mbcc)和原碳化物(Pinner)成半共格关系的新生过渡相(Pouter). 非碳化物形成元素Si和Al主要分布在碳化物/基体界面处; V和Mn主要分布在碳化物内层, 而Mo和Nb分布在整个碳化物区域. 粗化的碳化物是一种具有核心和外壳结构的合金碳化物, 内层主要是V-Mn-Mo-Nb的碳化物, 而外层主要是Mo-Nb的碳化物.

关键词 三维原子探针(3DAP)回火马氏体合金碳化物粗化    
Abstract

It has been confirmed that the fcc MC-type carbides such as VC and NbC have plate-like morphology and are mutually soluble when precipitated in tempering steel with martensite microstructure. Over-tempering makes the plate--like carbide change to spherical shape because of Ostwald coarsening. As coarsening is strongly linked to the diffusion rate of the carbide-forming elements, it is easy to understand that inhomogeneous structure may be formed when more kinds of elements were added, such as V, Nb and Mo. Besides, non-carbide-forming elements such as Si and Al tend to diffuse toward matrix. The morphology and lattice structure of carbide change simultaneously companying with the compositional redistribution of alloy elements. The detail compositional and nano-structural informations of the carbide can be obtained by 3DAP and HRTEM. In this paper, 3DAP and HRTEM were applied to characterize the composition, morphology and nanostructure of the carbide precipitated during 650 ℃ tempering of as-quenched Nb-V microalloyed steel. The results indicated that the martensite lath morphology was replaced by defect--free polygonal ferrite due to the recovery and recrystallization of the as-quenched microstructure. Simultaneously, the carbide-forming elements Mo and V diffused from smaller carbides to larger ones, resulting in the co-existence of carbides with different sizes and compositions. With the diffusion and redistribution of alloy elements, the prior-formed plate-like carbides grew along the radial direction, and a kind of transition carbide (Pouter) which is semi-coherent with ferrite matrix (Mbcc) was consequently formed. 3DAP constructional atom map demonstrated that Si and Al are rejected from the alloy carbide, whereas Mn and V were inhomogeneously distributed. That is, the coarsening carbide has a core-shell complex nanostructure, the core contains V, Mn, Mo and Nb, and the external shell contains Mo and Nb.

Key words3D atom probe (3DAP)    tempering martensite    alloy carbide    coarsening
收稿日期: 2009-04-29     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金重点项目50931003, 上海市重点学科建设项目S30107和上海市科委科技基金项目09520500100资助

作者简介: 刘庆冬, 男, 1982年生, 助理研究员, 硕士

[1] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishers, Ltd., 1978: 60
[2] Honeycombe R W K. Steels, Microstructure and Properties. London: Edward Arnold, 1980: 65
[3] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 415
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 415)

[4] Kaori M, Tomohiro O, Takahiro K, Yuichi K. Metall Mater Trans, 2003; 34A: 1565
[5] Hu Z F, Wu X F, Wang C X. Acta Metall Sin, 2003; 39: 585
(胡正飞, 吴杏芳, 王春旭. 金属学报, 2003; 39: 585)

[6] Miller M K. Atom Probe Tomography. NewYork: Plenum Press, 2000: 19
[7] Zhu C, Xiang X Y, Cerezo A, Hardwicke R, Krauss G, Smith G D W. Ultramicroscopy, 2007; 107: 808
[8] Caballero F G, Miller M K, Garcia–Mateo C, Capdevila C, Babu S S. Acta Mater, 2008; 56: 188
[9] Miyamoto G, Oh J C, Hono K, Furuhara T, Maki T. Acta Mater, 2007; 55: 5027
[10] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Mater Sin, 2008; 44: 1281
(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)

[11] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)

[12] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)

[1] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[2] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[3] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[4] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[5] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[6] 张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
[7] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[8] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
[9] 王学, 于淑敏, 任遥遥, 刘洪, 刘洪伟, 胡磊. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
[10] 董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. Cu-2.1Fe合金中共格g-Fe粒子的粗化规律与强化效果[J]. 金属学报, 2014, 50(10): 1224-1230.
[11] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[12] 赵彦,张洪宇,韦华,郑启,金涛,孙晓峰. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律[J]. 金属学报, 2013, 49(8): 981-988.
[13] 曾强,燕平,邵冲,赵京晨,韩凤奎,张龙飞. K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究[J]. 金属学报, 2013, 49(1): 63-70.
[14] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[15] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.