Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 323-328    DOI: 10.3724/SP.J.1037.2013.00383
  本期目录 | 过刊浏览 |
Inconel 625熔敷金属中δ相的形核与粗化机理*
邸新杰1,2(), 邢希学1,2, 王宝森3
1 天津大学天津市现代连接技术重点实验室, 天津 300072
2 天津大学材料科学与工程学院,天津300072
3 宝山钢铁股份有限公司宝钢研究院, 上海 201900
NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL
DI Xinjie1,2(), XING Xixue1,2, WANG Baosen3
1 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072
3 Baosteel Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900
引用本文:

邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
Xinjie DI, Xixue XING, Baosen WANG. NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL[J]. Acta Metall Sin, 2014, 50(3): 323-328.

全文: PDF(8745 KB)   HTML
摘要: 

利用扫描电镜(SEM)和透射电镜(TEM)研究了Inconel 625熔敷金属中δ相的形成机理, 并揭示了焊后热处理(PWHT)过程中δ相粗化的内在规律. 结果表明, 经850 ℃焊后热处理的Inconel 625熔敷金属中大量析出的针条状δ相呈网格状分布在基体γ相中, 且其附近出现了贫γ"相区域. δ相的形成是一个类贝氏体转变的固态相变过程, 其晶核是在γ"相密排面的层错上通过切变方式形成的. 同时, δ相的粗化行为是扩散控制的长大过程. 保温时间较短时, 实际δ相颗粒的平均尺寸符合LSW理论, 随着保温时间的延长, δ相的高密度、不同向析出特征使得其实际尺寸偏离了经典LSW理论的预测值.

关键词 Inconel 625熔敷金属焊后热处理δ形核粗化    
Abstract

Using Inconel 625 wire to weld high yield strength steels or stainless steels that commonly used in nuclear power plant components and gas turbines can significantly improve high temperature mechanical properties and corrosion resistance of weld structure. However, toughness, fatigue strength and creep rupture strength of weld would decline obviously because of the precipitation of δ phase during service at elevated temperatures for a long time. This work aims to investigate nucleation mechanism of δ phase in Inconel 625 deposited metal by means of SEM and TEM. Meanwhile, coarsening inherent law of δ phase during post-weld heat treatment (PWHT) at 850 ℃ for 2, 4 and 8 h respectively was revealed. The results indicate that a large number of needle-like δ phase precipitates in Inconel 625 deposited metal after PWHT at 850 ℃. These δ phases appear a grid-like distribution in γ-matrix, and there are some poor γ" phase regions appearing near δ phase. Formation process of δ phase is a solid phase transformation process which is like bainite transformation in steels. Crystal nucleus of δ phase form in the close-packed plane of γ" phase by shear mode, and coarsening behavior of δ phase is a diffusion-controlled growth process. When PWHT holding time is shorter, actual average size of δ phase is in line with LSW theory. With PWHT holding time extending, its actual average size deviates from the predicted value of classical LSW theory, because of the high-density and non-directional precipitation characteristics of δ phase.

Key wordsInconel 625 deposited metal    post-weld heat treatment    δ phase    nucleation    coarsening
收稿日期: 2013-07-08     
ZTFLH:  TG401  
基金资助:*天津市自然科学基金项目 11JCYBJC06000 和天津市科技支撑重点项目 11ZCGYSF00100资助
作者简介: null

邸新杰, 男, 1973年生, 副教授, 博士

图1  
图2  
图3  
图4  
图5  
Holding time / h l - / nm w - / nm
2 913 57
4 1423 84
8 1894 136
表1  不同保温时间下δ相的平均尺寸
图6  
图7  
[1] Special Metals Corporation Products. INCONEL® alloy 625, www.specialmetals.com/products
[2] Murr L E, Martinez E, Gaytan S M.Metall Mater Trans, 2011; 42A: 3491
[3] Xu Y L, Ran Q X, Li J, Peng J C, Xiao X S, Cao X L, Jia G Q.Mater Sci Eng, 2013; A569: 27
[4] Paul C P, Ganesh P, Mishra S K, Bhargava P, Negi J, Nath A K.Opt Laser Technol, 2007; 39: 800
[5] Evans N D, Maziase P J, Shingledecker J P, Yamamoto Y.Mater Sci Eng, 2008; A498: 412
[6] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-base Alloys. New Jersey: John Wiley & Sons, 2009: 47
[7] Shankar V, Bhanu Sankara Rao K, Mannan S L.J Nucl Mater, 2001; 288: 222
[8] Smith G D, Tillack D J, Patel S J. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Warrendale PA: The Minerals Metals & Materials Society, 2001: 35
[9] Janaki Ram D J, Venugopal Reddy A, Prasad Rao K, Madhusudhan Reddy G.J Mater Proc Technol, 2005; 167: 73
[10] Shoemaker L E. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Warrendale PA: The Minerals Metals & Materials Society, 2005: 409
[11] Cortial F, Corrieu J M, Vernot-Loier C.Metall Mater Trans, 1995; 26A: 1273
[12] Mathew M D, Bhanu Sankara Rao K, Mannan S L.Mater Sci Eng, 2004; A372: 327
[13] Mathew M D, Parameswaran P, Bhanu Sankara Rao K.Mater Charact, 2008; 59: 508
[14] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; A19: 453
[15] Huang Y, Langdon T G. J Mater Sci, 2007; 42: 421
[16] Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[17] Yeh A C, Lu K W, Kuo C M, Bor H Y, Wei C N.Mater Sci Eng, 2011; A530: 525
[18] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng, 2009; A510-511: 289
[19] Dong J X, Xie X S, Wang M.Ordnance Mater Sci Eng, 1993; 16: 51
[20] Xie X S, Dong J X, Fu S H, Zhang M C.Acta Metall Sin, 2010; 46: 1289
[20] (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[21] Footner P K, Richards B P.J Mater Sci, 1982; 17: 2141
[22] Smokingermain R E,translated by Zhang R J. Modern Physical Metallurgy. Beijing: Metallurgical Industry Press, 1980: 176
[22] (Smokingermain R E著,张人洁译. 现代物理冶金学. 北京: 冶金工业出版社, 1980: 176)
[23] Cahn J W.Acta Metall, 1966; 14: 83
[24] Orian R A.Acta Metall, 1964; 12: 1399
[25] Burke M G, Miller M K.Precipitationin Alloy 718. Pennsylvania: TMS, 1991: 3377
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[3] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[4] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[5] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[6] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[7] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[8] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[9] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[10] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[11] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[12] 邹宗园, 许小奎, 李银潇, 王超. 大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究[J]. 金属学报, 2017, 53(8): 957-967.
[13] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[14] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[15] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.