Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 63-70    DOI: 10.3724/SP.J.1037.2012.00428
  论文 本期目录 | 过刊浏览 |
K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究
曾强1,2,燕平1,邵冲1,赵京晨1,韩凤奎1,张龙飞1
1. 钢铁研究总院高温材料研究所, 北京 100086
2. 钢铁研究总院高温合金新材料北京重点实验室, 北京 100086
INVESTIGATION ON COARSENING BEHAVIORS OF SERRATED GRAIN BOUNDARIES IN K480 NICKEL BASE SUPERALLOY DURING LONG TERM AGING AT 900 ℃
ZENG Qiang1,2, YAN Ping1, SHAO Chong1, ZHAO Jingchen1, HAN Fengkui1,ZHANG Longfei1
1. High Temperature Materials Research Department, Central Iron and Steel Research Institute, Beijing 100086
2. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing,100086
引用本文:

曾强,燕平,邵冲,赵京晨,韩凤奎,张龙飞. K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究[J]. 金属学报, 2013, 49(1): 63-70.
ZENG Qiang, YAN Ping, SHAO Chong, ZHAO Jingchen, HAN Fengkui, ZHANG Longfei. INVESTIGATION ON COARSENING BEHAVIORS OF SERRATED GRAIN BOUNDARIES IN K480 NICKEL BASE SUPERALLOY DURING LONG TERM AGING AT 900 ℃[J]. Acta Metall Sin, 2013, 49(1): 63-70.

全文: PDF(883 KB)  
摘要: 

铸造K480镍基高温合金经固溶、时效处理后, 在900 ℃长期时效3000 h. 分别用OM和SEM对合金的晶界组织进行了观察, 用EDS对合金中相的成分进行了测量. 结果显示, K480合金的晶界为曲折的锯齿形晶界, 该晶界由含碳化物晶界及含γ’晶界两部分构成. 随着时效时间的延长, 两部分晶界均发生粗化. 其中含碳化物晶界中的MC碳化物分解形成M6C相和η相,并随时间长大; 而含γ’晶界中不连续γ’相逐渐相连并形成γ’相条带. 含碳化物晶界的粗化比要高于含γ’晶界, 且随时效时间延长, 二者的差异变大. 用Johnson-Mehl-Avrami-Kolmogorov (JMAK)方程量化了时效过程中碳化物晶界和γ’晶界随时效时间的粗化行为, 实验数据与计算结果吻合, 表明二者的粗化行为随时间的演变规律是遵循着JMAK方程的变化形式.

关键词 镍基高温合金锯齿形晶界粗化行为长期时效JMAK方程    
Abstract

Serrated grain boundaries in conventional cast nickel base superalloys can enhance high temperature mechanical properties of the alloy due to a large number of precipitates arranged in grain boundaries, which effectively inhibited the movement of dislocations. During service at elevated temperatures, the ripening, coalescence or degeneration process may occur in these precipitates, resulting in the coarsening of grain boundaries with time. This paper aims to investigate the coarsening kinetics and microstructure evolution of serrated grain boundaries in a conventional nickel base superalloy during long term aging. After solution and aging heat treatment, a long term aging treatment at 900 ℃ for 3000 h was carried out on a cast K480 nickel base superalloy. The microstructure of grain boundaries (GBs) was observed using OM and SEM respectively, and phase composition was measured using EDS. The results showed that the GBs of K480 alloy were the irregular serrated GBs composed of carbide GBs andγ’ GBs respectively, both of which coarsened with aging time. During the course of aging, the MC carbides in the carbide GB were decomposed with the formation of new phases of M6C carbide andη phase; the discontinuous large-sizedγ’ particles in the γ’ GB were coalesced with each other along the GB direction with aging time andγ’ bands formed after aging treatment.The coarsening ratio of the carbide GB was higher than that ofγ’ GB at the beginning of aging treatment and the difference in these two values became larger with increase in aging time. A Johnson-Mehl-Avrami-Kolmogorov (JMAK) type of function was employed to quantify the evolution of coarsening behaviors of the two kinds of GBs with aging time. The good agreement between calculated results and experimental data indicated that the coarsening behaviors of carbide GB andγ’ GB in the serrated GB were evolved as a JMAK type of function of aging time in K480 nickel base superalloy long term aged at 900 ℃.

 
Key words
收稿日期: 2012-07-17     
作者简介: 曾强, 男, 1974年生, 高级工程师, 博士

 


[1] Rohrer G S. J Mater Sci, 2011; 46: 5811

[2] Gleiter H, Chalmers B. Progress Mater Sci, 1972; 14: 1

[3] Brandon D G. Acta Metall, 1966; 14: 1479

[4] Randle V, Owen G. Acta Mater, 2006; 54: 1777

[5] Kobayashi S, Nakamura M, Tsurekawa S, Watanabe T. J Mater Sci, 2011; 46: 4254

[6] Watanabe T. J Mater Sci, 2011; 46: 4095

[7] Mitchell R J, Li H Y, Huang Z W. J Mater Process Technol, 2009; 209: 1011

[8] Safari J, Nategh S. J Mater Process Technol, 2006; 176: 240

[9] Larson J M, Floreen S. Metall Trans, 1977; 8A: 51

[10] Lizuka H, Tanaka M. J Mater Sci, 1990; 25: 3785

[11] Yeh A C, Lu K W, Kuo C M, Bor H Y, Wei C N. Mater Sci Eng, 2011; A530: 525

[12] Hong H U. Metall Mater Trans, 2012; 43A: 173

[13] Koul A K, Thamburaj R. Metall Trans, 1985; 16A: 17

[14] Kim K J, Hong H U, Nam S W. Mater Chem Phys, 2011; 126: 480

[15] Miyagawa O, Yamamoto M, Kobayashi M. In: Muzyka D R, Couts W H, Walelewski G E, Kear B H, Stroup J P,

Dreshfield R L, Morrow H eds., Superalloys 1976, Warrendale PA: TMS, 1976: 245

[16] Konopleva E V, Mcqueen H J, Evangelista E. Mater Character, 1995; 34: 251

[17] Koul A K, Gessinger G H. Acta Metall, 1983; 31: 1601

[18] Wu Q, Song H, Swindeman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569

[19] Huang Y, Wang L, Liu Y, Fu S, Wu J, Yan P. Trans Nonferrous Met Soc China, 2011; 21: 2199

[20] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014

[21] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049

[22] Iwashita C H, Wei R P. Acta Mater, 2000; 48: 3145

[23] Rylands L M, Wilkes D M J, Rainforth W M, Jones H. J Mater Sci, 1994; 29: 1895

[24] Ardell A J. Acta Metall, 1972; 20: 601

[25] Christian J W. The Theory of Transformations in Metals and Alloys.

2nd Ed., Kidlington: Pregamon, 2002: 529

[26] Zeng Q, Wen X, Zhai T. Mater Sci Eng, 2008; A476: 290

[27] Cahn J W. Acta Metall, 1956; 4: 449

[28] Choi B G, Kim I S, Kim D H, Jo C Y. Mater Sci Eng, 2008; A478: 329

[29] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Mater Sci Eng, 2012; A543: 121

[30] Liu W C, Morris J G. Metall Mater Trans, 2005; 36A: 2829

[31] Cahn J W. Acta Metall, 1957; 5: 169
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[8] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[11] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[12] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[13] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[14] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.