Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 325-332    DOI: 10.11900/0412.1961.2014.00430
  本期目录 | 过刊浏览 |
3DAP研究高碳高合金钢深冷处理过程的C偏聚行为
谢尘, 吴晓春(), 闵娜, 沈贇靓
上海大学材料科学与工程学院, 上海 200072
CARBON SEGREGATION BEHAVIOR OF HIGH-CARBON HIGH-ALLOY STEEL DURING DEEP CRYOGENIC TREATMENT USING 3DAP
XIE Chen, WU Xiaochun(), MIN Na, SHEN Yunliang
School of Materials Science and Engineering, Shanghai University, Shanghai 200072
引用本文:

谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
Chen XIE, Xiaochun WU, Na MIN, Yunliang SHEN. CARBON SEGREGATION BEHAVIOR OF HIGH-CARBON HIGH-ALLOY STEEL DURING DEEP CRYOGENIC TREATMENT USING 3DAP[J]. Acta Metall Sin, 2015, 51(3): 325-332.

全文: PDF(4824 KB)   HTML
摘要: 

将高碳高合金钢SDC99分别在1030 ℃奥氏体化30 min后油淬、在-196 ℃液氮中深冷处理8 h及210 ℃回火2 h. 采用三维原子探针(3DAP)技术分析了淬火态、深冷态、回火态C原子的空间分布; 用XRD研究了3种热处理状态下马氏体轴比、马氏体中含C量的变化; 用SEM原位观察深冷前后碳化物的形貌. 结果表明, C原子在深冷处理过程中偏聚于马氏体孪晶界, 形成厚度为5~10 nm的偏聚区. 210 ℃低温回火过程中, C进一步偏聚形成富C相或与合金原子形成M23C6型碳化物.

关键词 高碳高合金钢深冷处理C偏聚碳化物形貌三维原子探针(3DAP)    
Abstract

Deep cryogenic treatment (DCT) is a supplement to conventional heat treatment, which usually involves cooling the material to liquid nitrogen temperature around -196 ℃ for a given soaking time and then heating back to the room temperature. As claimed in many pioneering researchers, DCT can evidently improve the hardness and wear resistance of high-carbon high-alloy steel and has been widely used to die steels, cutting tools, carburizing steels and barrels. The improvement of mechanical properties by DCT can be attributed to the transformation from retained austenite to martensite, the fine dispersion of nanoscale carbide precipitate and the removal of residual stresses. However, the nanoscale carbide precipitate is still lack of evidence and the interpretation of carbon segregation behavior during DCT is still unconvincing. In this work, the high-carbon high-alloy steel SDC99 is first austenized at 1030 ℃ for 30 min and then immersed in liquid nitrogen for 8 h and finally tempered at 210 ℃ for 2 h. The spatial distributions of carbon atom and alloy element concentration in quenched, DCT treated and tempered samples are analyzed by three dimensional atom probe (3DAP), respectively. In addition, the axial ratio and carbon content of martensite are studied using XRD and the carbide morphology before and after DCT are also observed in situ by SEM. The results indicate that after quenching from 1030 ℃ to room temperature, the volume fraction of retained austenite in SDC99 is about 21.1%. The retained austenite is soft and unstable which can easily transfer to martensite at lower temperatures. Carbon atoms will segregate slightly due to self-tempering. However, other alloy atoms do not segregated with carbon atoms. After quenching from 1030 ℃ to room temperature and then cooling in nitrogen for 8 h, the volume fraction of retained austenite in SDC99 will decrease to 7.4%. Carbon atoms will segregate along the twin boundary of martensite and form a segregation area with a thickness about 5~10 nm.There is no carbide precipitate after DCT. Furthermore, carbon atoms segregate again during heating up back to room temperature from -196 ℃. After tempering at 210 ℃ for 2 h, the volume fraction of retained austenite is almost 5.4%. Both carbon and alloy atoms will segregate during tempering at 210 ℃. With the increase of tempering time, the carbon segregation will aggravate and result in a C-rich phase or form the M23C6 carbide combined with other alloy element. This is one of the main reasons increasing the wear resistance of tool steels.

Key wordshigh-carbon high-alloy steel    deep cryogenic treatment (DCT)    carbon segregation    carbide morphology    3DAP
    
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金资助项目51171104
作者简介: null

谢 尘, 女, 1986年生, 博士生

Process Heat treatment Hardness / HRC Vγ / %
Quenching Quenching, 1030 ℃, 30 min 62 21.1
DCT Quenching, 1030 ℃, 30 min+ 64 7.4
DCT, -196 ℃, 8 h
Tempering Quenching, 1030 ℃, 30 min+ 63 5.4
DCT, -196 ℃, 8 h+
tempering, 210 ℃, 2 h
表 1  SDC99钢的热处理工艺和硬度及残余奥氏体含量
图1  不同热处理工艺后SDC99钢的XRD谱
图2  SDC99钢经淬火和深冷处理后的SEM像
图3  淬火态SDC99钢中不同元素的原子空间分布图
图4  淬火态SDC99钢中C元素不同等浓度面的三维原子探针(3DAP)图
图5  经过淬火和深冷处理后SDC99钢中不同元素的原子空间分布图
图6  经淬火和深冷处理后SDC99钢的C元素浓度曲线
图7  经过淬火和深冷处理后SDC99钢的C元素不同等浓面的3DAP图
图8  经过深冷处理和210 ℃回火2 h后SDC99钢的C原子空间分布图及不同区域的合金原子浓度
图9  JMat Pro®计算获得的SDC99钢平衡态碳化物含量
[1] Baldissera P, Delprete C. Open Mech Eng J, 2008; 2(8) :1
[2] Huang J Y, Zhu Y T, Liao X Z, Beyerlein I J, Bourke M A, Mitchell T E. Mater Sci Eng, 2003; A339: 241
[3] Das D, Dutta A K, Toppo V, Ray K K. Mater Manuf Processes,2007; 22: 47
[4] Meng F, Tagashira K, Azuma R, Sohma H. ISIJ Int, 1994; 34: 205
[5] Li S H, Deng L H, Wu X C, Wang H B, Min Y A. Mater Sci Eng, 2010; A527: 6899
[6] Li S H, Deng L H, Wu X C, Wang H B, Min Y A, Min N. Mater Sci Eng, 2010; A527: 7950
[7] Li S H, Min N, Deng L H, Wu X C, Min Y A, Wang H B. Mater Sci Eng, 2011; A528: 1247
[8] Li S H, Min N, Li J W, Wu X C, Li C H, Tang L L. Mater Sci Eng, 2013; A575: 51
[9] Tyshchenko A I, Theisen W, Oppenkowski A, Siebert S, Razumov O N, Skoblik A P. Mater Sci Eng, 2010; A527: 7027
[10] Zhu C, Cerezo A, Smith G D W. Ultramicroscopy, 2009; 109: 545
[11] Wilde J, Cerezo A, Smith JG D W. Scr Mater, 2000; 43: 39
[12] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
[12] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[13] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
[13] (刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[14] Liu Q D, Chu Y L, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1297
[14] (刘庆冬, 褚于良, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1297)
[15] Matteo V, Karen P, Marcel A J S. Acta Mater, 2014; 65: 383
[16] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
[16] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)
[17] Xie Z J, Ren Y Q, Zhou W H, Yang J R, Shang C J, Misra R D K. Mater Sci Eng, 2014; A603: 69
[18] Clarke A J, Speer J G, Miller M K, Hackenberg R E, Edmonds D V, Matlock D K, Rizzo F C, Clarke K D, Moor E De. Acta Mater, 2008; 56: 16
[19] Gao G H, Zhang H, Gui X L, Luo P, Tan Z L, Bai B Z. Acta Mater, 2014; 76: 425
[20] Li S H, Xie Y Z, Wu X C. Cryogenics, 2010; 50: 89
[21] Duan C Z, Wang M J. J Iron Steel Res, 2008; 20(8): 38
[21] (段春争, 王敏杰. 钢铁研究学报, 2008; 20(8): 38 )
[22] Kurdjumov G V. Metall Trans, 1976; 7A: 999
[23] Gavriljuk V G, Theisen W, Sirosh V V, Polshin E V, Kortmann A K, Mogilny G S, Petrov Y N, Tarusin Y V. Acta Mater, 2013; 61: 1705
[24] Tyshchenko A I, Theisen W, Oppenkowski A, Siebert S, Razumov O N, Skoblik A P, Sirosh V A, Petrov Y N, Gavriljuk V G. Mater Sci Eng, 2010; A527: 7027
[25] Li J W, Tang L L, Li S H, Wu X C. Mater Des, 2013; 47: 653
[26] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
[26] (刘庆冬, 储于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)
[27] Li S H, Deng L H, Wu X C, Min Y A, Wang H B. Cryogenics, 2010; 50: 754
[28] Li S Y, Liu T Z, Li G. Mater Rev, 2003; 17(8): 80
[28] (李士燕, 刘天佐, 李 钢. 材料导报, 2003; 17(8): 80)
[29 ] Li J W, Feng Y, Tang L L, Wu X C. Mater Lett, 2013; 100: 274
[30] Li S H. PhD Dissertation, Shanghai University, 2011
[30] (李绍宏. 上海大学博士学位论文, 2011)
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[4] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[5] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[6] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.
[7] 迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.
[8] 刘庆冬 刘文庆 王泽民 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 I. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.
[9] 刘庆冬 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 II. 长大[J]. 金属学报, 2009, 45(11): 1288-1296.
[10] 刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.
[11] 赵海东; 柳百成; 房贵如; 熊守美 . 球墨铸铁中白口共晶形成的数值模拟[J]. 金属学报, 2001, 37(10): 1107-1111 .