Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1288-1296    
  论文 本期目录 | 过刊浏览 |
回火马氏体中合金碳化物的3D原子探针表征 II. 长大
刘庆冬1; 2); 彭剑超1); 刘文庆1); 周邦新1)
1) 上海大学分析测试中心; 上海 200444 2) 江苏省(沙钢)钢铁研究院; 苏州 215625
3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE  II. Growth
LIU Qingdong1; 2);  PENG Jianchao1);  LIU Wenqing1);   ZHOU Bangxin1)
1) Instrumental Analysis & Research Center; Shanghai University; Shanghai 200444
2) Institute of Research of Iron and Steel; Jiangsu Province and Sha-Steel; Suzhou 215625
引用本文:

刘庆冬 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 II. 长大[J]. 金属学报, 2009, 45(11): 1288-1296.
, , , . 3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE  II. Growth[J]. Acta Metall Sin, 2009, 45(11): 1288-1296.

全文: PDF(1374 KB)  
摘要: 

Nb-V微合金钢在1200 ℃固溶0.5 h后淬火, 在450-650 ℃回火不同时间, 用显微 硬度和TEM测试并观察析出强化和组织软化现象, 用三维原子探针(3DAP)对产生二次硬化 的合金碳化物的成分进行定量分析, 研究其析出长大规律. 结果显示, 二次硬化主要是合金 碳化物析出强化的作用. 随着回火温度的升高或回火时间的延长, 合金碳化物的成分动态变 化, 即强碳化物形成元素取代或部分取代较弱的碳化物形成元素. 首先, V和Nb取代Mo, 然后Nb部分取代V, 最后形成具有一定原子比的合金碳化物. 相对回火温度, 回火时 间对碳化物内合金元素的相对含量影响不大. 在合金碳化物长大过程中, 薄片状碳化物优先 沿径向方向生长, 然后沿厚度方向长大并开始粗化.

关键词 三维原子探针(3DAP)回火马氏体合金碳化物长大    
Abstract

The mechanical properties of quench-tempered high-strength low-alloy steels are commonly optimized by fine and dispersively distributed alloy carbides. The role of the alloying elements in determining the alloy carbide precipitation sequence is of great significance. The co-addition of carbide-forming elements such as Mo, V and Nb complicates the precipitation behavior. The mutual inter--solutions and growth rates of various MC- and/or M2C-type carbides are qualitatively affected by the intrinsic solubility and diffusion at certain tempering condition. However, comprehensive study of the precipitation sequence must be followed with atomic scale resolution techniques. The 3D atom probe (3DAP) is a unique tool capable of obtaining chemical information at the atomic level, offering a powerful method to investigate microstructural and compositional changes occurring at nano-scale. And the sizes, morphology and composition of individual alloy carbide may be visualized and quantified by 3DAP. In this paper, a quenched Nb-V microalloyed steel was chosen to investigate the precipitation behavior of alloy carbide after tempering at 450-650 ℃ for different times. 3DAP, micro-hardness test and TEM were applied to characterize the phenomena of hardening and softening during tempering, and the composition evolution and growth behaviors of the alloyed carbides were also studied. The results indicated the second hardening of the 500-600 ℃ tempering martensite is mainly resulting from precipitation strengthening of alloy carbides. The alloy carbides composition dynamically changed with elevated temperature or prolonged time, that is, the stronger carbide-forming elements replaced or partly replaced the weaker ones. At first V and Nb replaced Mo, and then Nb partly replaced V, and at last the carbides with certain composition were formed. Tempering time has relatively less effect on the carbides composition compared with temperature. When the tempering temperature elevated or tempering time prolonged, the alloying elements can obtain adequate diffusion energy and/or time, the plate-like carbides preferentially grow along the radial direction, and then grow along the thickness direction and start to coarsen.

Key words3D atom probe (3DAP)    tempering martensite    alloy carbide    growth
收稿日期: 2009-04-29     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金重点项目50931003, 上海市重点学科建设项目S30107和上海市科委科技基金项目09520500100资助

作者简介: 刘庆冬, 男, 1982年生, 助理研究员, 硕士

[1] Yamasaki S, Bhadeshia H K D H. Mater Sci Technol, 2003; 19: 723
[2] Yamasaki S, Bhadeshia H K D H. Mater Sci Technol, 2003; 19: 1335
[3] Yamasaki S, Bhadeshia H K D H. Proc R Soc, 2006; 462A: 2315
[4] Yan F, Shi H S, Fan J F, Xu Z. Mater Charact, 2008; 59: 883
[5] Miller M K. Atom Probe Tomography. NewYork: Plenum Press, 2000: 19
[6] Isheim D, Gagliano M S, Fine M E, Seidman D N. Acta Mater, 2006; 54: 841
[7] Timokhina I B, Hodgson P D, Ringer S P, Zheng R K, Pereloma E V. Scr Mater, 2007; 56: 601
[8] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073
[9] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[10] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)
[11] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)

[12] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 92
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 92)

[1] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[3] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[4] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[5] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[6] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[7] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[8] 刘志桥,杨平,毛卫民,崔凤娥. 取向硅钢中 114 418 织构对二次再结晶时晶粒异常长大的影响*[J]. 金属学报, 2015, 51(7): 769-776.
[9] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[10] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[11] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[12] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[13] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[14] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.
[15] 迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.