Please wait a minute...
金属学报  2008, Vol. 44 Issue (6): 757-763     
  论文 本期目录 | 过刊浏览 |
热机械处理对Ti-45Al-5Nb-0.3Y合金的显微组织与力学性能的影响
孔凡涛;陈玉勇;李宝辉
哈尔滨工业大学材料科学与工程学院
Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments
;yuyong chen;BaoHui Li
哈尔滨工业大学
引用本文:

孔凡涛; 陈玉勇; 李宝辉 . 热机械处理对Ti-45Al-5Nb-0.3Y合金的显微组织与力学性能的影响[J]. 金属学报, 2008, 44(6): 757-763 .
, , . Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments[J]. Acta Metall Sin, 2008, 44(6): 757-763 .

全文: PDF(4091 KB)  
摘要: 包套锻造Ti-45Al-5Nb-0.3Y合金由大量细小的动态再结晶等轴γ晶粒 (晶粒尺寸可达1-2 um) 、弯曲或破碎的层片和少量的残余平直层片组成, 变形组织含有大量位错及少量变形孪晶. 锻态试样抗拉强度 (σb)、延伸 率 (δ) 分别达到\linebreak 708.1 MPa 和0.95%. 再通过不同的热处理分别得到晶粒 细小的双态组织、近层片组织和全层片组织. 经1320 ℃/30 min炉冷后得到双态 组织, 层片晶粒尺寸 (d l) 约为20 um, 层片体积分数 (ψ l}$) 约为60%, 具有 最高的, 约为1.9%, σ b约为658.9 MPa, 为穿晶和沿晶混合断裂; 经 1340 ℃/30 min炉冷后得到近层片组织, d l约为60 um, ψl约 为95%,σ b 约为 690.2 MPa, δ约为1.75%, 主要为穿晶 (层片) 断 裂; 经1370 ℃/15 min炉冷后得到细小全层片组织 (d l约为40 um), 具有最 高的σ b, 约为715.1 MPa,δ约 为1.51%, 为穿晶断裂.
关键词 Ti-45Al-5Nb-0.3Y合金热机械处理组织    
Abstract:Thermo-mechanical treatments, through combined action of hot forging and heat treatment, were performed on a Ti-45Al-5Nb-0.3Y alloy to investigate their effect on the microstructure and mechanical properties of the alloy. As-forged Ti-45Al-5Nb-0.3Y alloy is comprised of a large number of dynamic recrystallization (DRX) γ grains, curved and broken lamellae, and a small amount of remnant lamellae. The DRX γ grain size reaches 1~2μm. The deformed regions contained lots of dislocations and a little deformation twinning. As-forged Ti-45Al-5Nb-0.3Y alloy presents better tensile properties in comparison to as-cast material at room temperature. The ultimate tensile strength of as-forged alloy is about 708.1MPa and the elongation is about 0.95%. The fine duplex (DP), near lamellar (NL) and fully lamellar (FL) microstructures are obtained by further heat treatment. These microstructures have better room temperature ductility. The DP microstructure with lamellar colony size of about 20µm and lamellar volume fraction of about 60% is obtained by 1320℃/30min/FC. The microstructure has the highest ductility of about 1.9% and ultimate tensile strength of about 658.9MPa, and shows the transgranular and intergranular cracks. The NL microstructure with lamellar colony size of about 60µm and lamellar volume fraction of about 95% is obtained by 1340℃/30min/FC. The microstructure has the ductility of about 1.75% and ultimate tensile strength of about 690.2MPa, and mainly shows the transgranular cracks. The FL microstructure with lamellar colony size of about 40µm is obtained by 1370℃/15min/FC. The microstructure has the ductility of about 1.5% and highest ultimate tensile strength of about 715.1MPa, and shows the transgranular cracks.
Key wordsTiAl alloy    thermo-mechanical treatment    microstructure    mechanical properties    phase transformation
收稿日期: 2007-10-22     
ZTFLH:  TG146.2  
[1]Ramanujan R V.Int Mater Rev,2000;45:217
[2]Chen Y Y,Kong F T.Acta Metall Sin,2002;38:1141 (陈玉勇,孔凡涛.金属学报,2002;38:1141)
[3]Edward A L.Intermetallics,2000;8:1339
[4]Clements H,Bartels A,Bystrzanowski S,Chladil H,Leit- her H,Dehm G,Gerling R,Schimansky F P.Inter- metallics,2006;14:1380
[5]Huang Z H.Trans Nonferrous Met Soc China,2003;13: 1325
[6]Maziasz P J,Liu C T.Metall Mater Trans,1998;29A:105
[7]Appel F,Oehring M,Paul J D H,Klinkenberg C,Cameiro T.lntermetallics,2004;12:791
[8]Tetsui T,Shindo K,Kobayashi S,Takeyama M.Scr Mater, 2002;47:399
[9]Tetsui T,Kobayashi S,Takeyama M.Intermetallics,2003; 11:299
[10]Bartels A,Kestler H,Clemens H.Mater Sci Eng,2002; A329-331:153
[11]Chen Y Y,Kong F T,Han J C,Chcn Z Y,Tian J.Inter- metallics,2005;13:263
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.