Please wait a minute...
金属学报  2008, Vol. 44 Issue (4): 457-462     
  论文 本期目录 | 过刊浏览 |
定向凝固Al2O3/YAG共晶自生复合材料的组织形态及非规则共晶生长
苏海军;张军;刘林;傅恒志
陕西西安西北工业大学凝固技术国家重点实验室
Microstructural morphology and irregular eutectic growth of directionally solidified Al2O3/YAG eutectic in situ composite
;;;
陕西西安西北工业大学凝固技术国家重点实验室
引用本文:

苏海军; 张军; 刘林; 傅恒志 . 定向凝固Al2O3/YAG共晶自生复合材料的组织形态及非规则共晶生长[J]. 金属学报, 2008, 44(4): 457-462 .
, , , . Microstructural morphology and irregular eutectic growth of directionally solidified Al2O3/YAG eutectic in situ composite[J]. Acta Metall Sin, 2008, 44(4): 457-462 .

全文: PDF(868 KB)  
摘要: 采用激光区熔定向凝固技术制备了Al2O3/Y3Al5O12(YAG)共晶自生复合材料. 利用SEM, XRD, EDS及TEM对共晶形貌特征、相组成、界面结构.组织演化及相析出规律进行了研究; 利用分形维数对非规则微观组织形态进行了定量表征. 在此基础上, 分析讨论了氧化物共晶的非规则共晶生长机制. 结果表明: Al2O3/YAG共晶自生复合材料由无规则均匀分布的Al2O3和YAG两相组成, 两相之间相互交错, 耦合生长, 呈象形文字结构; 凝固过程中, YAG相作为领先相析出; 随扫描速率增大, 共晶间距高度细化, 最小层间距为0.2 m;在低扫描速率下, 共晶组织属典型的层片状非规则共晶组织, 具有明显的分形特征,当扫描速率达到2000 m/s 时, 出现胞状和树枝状组织, 组织分形特征减弱; 共晶两相高的熔化熵及激光快速凝固大的动力学过冷导致的小平面/小平面共晶生长是形成复杂非规则共晶组织的主要原因.
关键词 定向凝固Al2O3/Y3Al5O12共晶自生    
Abstract:Directionally solidified Al2O3/Y3Al5O12 (YAG) eutectic in situ composite was prepared by the laser zone remelting technique. The eutectic morphology, phase composition, interface structure, microstructure evolution and phase precipitation rule were analyzed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). The irregular microstructure morphology was quantitatively characterized by fractal dimension. Further more, the irregular eutectic growth mechanism of the oxide eutectic was detailedly discussed. The results show that the directionally solidified Al2O3/YAG eutectic in situ composite only consists of homogeneously distributed Al2O3 and YAG phases with well matched interfaces. The two phases interweave each other and coupledly grow, showing a “Chinese script” structure. The YAG phase is the primary phase during solidification. The eutectic spacing is highly refined with increasing the laser scanning rate and the minimal spacing is down to 0.2um. At low laser scanning rate, the eutectic tends to show typical lamellar irregular eutectic structure and has evident fractal characteristic, whereas, when the laser scanning rate reaches a high value of 2000um/s, the cellular and dendritic structures appear and the fractal characteristic is weaken. The faceted/faceted eutectic growth derived from the large kinetic undercooling of laser rapid solidification and high entropies of fusion of eutectic phases is the most primary factor to determine the formation of the complexly irregular eutectic morphology.
Key wordsdirectional solidification    Al2O3/Y3Al5O12    eutectic in situ composite    irregular eutectic    microstructu
收稿日期: 2007-09-05     
ZTFLH:  TB332  
[1]Otsuka A,Waku Y,Kitagawa K,Arai N.Energy,2005; 30:523
[2]Waku Y,Nakagawa N,Wakamoto T,Ohtsubo H,Shimizu K,Kohtoku Y.Nature,1997;389:49
[3]Waku Y,Sakuma T.J Eur Ceram Soc,2000;20:1453
[4]Llorca J,Orera V M.Prog Mater Sci,2006;51:711
[5]Su H J,Zhang J,Cui C J,Liu L,Fu H Z.J Cryst Growth, 2007,307:448
[6]Larrea A,Fuente G F,Merino R I,Orera V M.J Eur Ceram Soc,2002;22:191
[7]Caslavsky J L,Viechnicki D J.J Mater Sci,1980;15: 1709
[8]Abell J S,Harris I R.J Mater Sci,1974;9:527
[9]Pastor J Y,Llorca J,Salazar A,Oliete P B,Francisco I D,Pena J I.J Am Ceram Soc,2005;88:1488
[10]Zhang J,Su H J,Liu L.J Aeronaut Mater,2003;23:171 (张军,苏海军,刘林.航空材料研究学报,2003;23:171)
[11]Yang S,Huang W D,Lin X,Su Y P,Zhou Y H.Appl Laser,1999;19:243 (杨森,黄卫东,林鑫,苏云鹏,周尧和.应用激光,1999;19:243)
[12]Francisco I D,Merino R I,Orera V M,Larrea A,Pena J I.J Eur Ceram Soc,2005;25:1341
[13]Elliott R.Eutectic Solidification Processing of Crystalline and Glassy Alloys.London:Butterworths & Co.Ltd., 1983:92
[14]Chernov A A.J Cryst Growth,1974;24/25:11
[15]Cui C J,Zhang J,Su H J,Wang H,Liu L,Fu H Z.J Inorg Mater,2007;22:1019 (崔春娟,张军,苏海军,王红,刘林,傅恒志.无机材料学报,2007;22:1019)
[16]Yin Y S,Zhang J D.Alumina Ceramic and Composites. Beijing:Chemical Industry Press,2001:5 (尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001:5)
[17]Cockanye B,Chesswas M D,Gasson B.J Mater Sci,1968; 3:224
[18]Mandelbrot B B.The Fractal Geometry of Nature.New York:Freeman,1982:58
[19]Harimkar S P,Dahotre N B.Mater Character,2008(in press)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[7] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[12] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[14] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[15] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.