Please wait a minute...
金属学报  2007, Vol. 42 Issue (1): 91-95     
  论文 本期目录 | 过刊浏览 |
等温退火和脉冲电流处理对Fe73.5Cu1Nb3Si13.5B9非晶薄带组织和显微硬度的影响
姚可夫;邱胜宝
清华大学
The influences of pulsing current and isothermal annealing on the microstructure and micro-hardness of Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons
;
清华大学
引用本文:

姚可夫; 邱胜宝 . 等温退火和脉冲电流处理对Fe73.5Cu1Nb3Si13.5B9非晶薄带组织和显微硬度的影响[J]. 金属学报, 2007, 42(1): 91-95 .
, . The influences of pulsing current and isothermal annealing on the microstructure and micro-hardness of Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons[J]. Acta Metall Sin, 2007, 42(1): 91-95 .

全文: PDF(270 KB)  
摘要: 等温退火和高强脉冲电流处理都能使Fe73.5Cu1Nb3Si13.5B9 (at.%)非晶薄带的显微组织和显微硬度发生显著变化。实验结果表明,高强脉冲电流处理能使Fe73.5Cu1Nb3Si13.5B9非晶薄带发生显著的低温短时晶化。在初始阶段,脉冲电流促进原子迁移,加速原子和原子团扩散,使Fe73.5Cu1Nb3Si13.5B9非晶薄带发生结构弛豫,显微硬度由原始态非晶的8.2 GPa逐渐增加至~9.0 GPa,增幅约为10%。随后发生显著晶化,大量析出纳米尺寸的α-Fe(Si)相,显微硬度则急剧增加至12.4 GPa以上,增幅达~50%。在低于玻璃转变温度100 K的条件下,高强脉冲电流处理Fe73.5Cu1Nb3Si13.5B9非晶合金可在约30秒的时间内即基本完成纳米晶化过程。
关键词 脉冲电流纳米晶化显微硬度等温退火    
Abstract:The influence of pulsing current and isothermal annealing on the microstructure and micro-hardness of Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons have been studied. It has been found that Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons can significantly nanocrystallized by pulsing current treatment in a short processing time (within 30 s) at low processing temperature (100 K lower than glass transition temperature). At the early stage of pulsing current treatment, the micro-hardness increases by 10% from 8.2 to 9.0 GPa with respect to the initial ribbons, resulted by the structural relaxation. Then an abrupt increase by 50% from 8.2 to 12.4 GPa of the micro-hardness occur, as a result of the precipitation of abundant α-Fe nanocrystals with an average grain size of 8.5 nm. It indicates that pulsing current treatment is an effective way for the nanocrystallization of the studied amorphous alloy.
Key wordspulsing current    nanocrystallization    micro-hardness    isothermal annealing
收稿日期: 2006-04-17     
ZTFLH:  TG139.8  
[1] Yoshizawa Y,Oguma S,Yamauchi K.J Appl Phys,1988; 64:6044
[2] Yoshizawa Y,Yamauchi K.Mater Trans JIM,1990;31: 307
[3] Hono K,Inoue A,Sakurai T.Appl Phys Lett,1991;58: 2180
[4] Herzer G.IEEE Trans Magn,1990;26:1397
[5] Ayers J D,Harris V G,Sprague J A,Elam W T,Jones H N.Acta Mater,1998;46:1861
[6] McHenry M E,Willard M A,Laughlin D E.Prog Mater Sci,1999;44:291
[7] Lai Z H,Conrad H,Chao Y S,Wang S G,Sun J.Scr Metall,1989;23:305
[8] Chao Y S,Sun S Q,Teng G Q,Lai Z H.Acta Phys Sin, 1996;45:1506 (晁月盛,孙少权,滕功清,赖祖涵.物理学报,1996;45:1506)
[9] Lai Z H,Conrad H,Teng G Q,Chao Y S.Mater Sci Eng, 2000;A287:238
[10] Houssa R,Franco V,Conde A.J Magn Magn Mater,1999; 203:199
[11] Wu W F,Yao K F,Zhao Z K.Chin Sci Bull,2004;49: 2268 (吴文飞,姚可夫,赵占奎.科学通报, 2004;49:2268)
[12] Zhang C Y,Yao K F.J Non—Cryst Solids,2005;351:3663
[13] Yao K F,Wang P Y.J Meeh Strength,2003;25:340 (姚可夫,王沛玉.机械强度, 2003;25:340)
[14]Wu W F,Yao K F.Rare Met Mater Eng,2005;34:505 (吴文飞,姚可夫.稀有金属材料与工程, 2005;34:505)
[15] Mizubayashi H,Hao T,Tanimoto H.J Non Cryst Solids, 2002;312-314:581
[16] Holland T B,Loffler J F,Munir Z.J Appl Phys, 2004;95: 2896
[17] Chen H S,Chuang S Y.Appl Phys Lett,1977;31:255
[18] Chen H S,Lo C C.In:Grant N J,Giessen B C,eds., proc 2nd Int Conf on Rapidly Quenched Metals, Cambridge. Mass.: Massachusetts Institute of technology Press.1976: 413
[19] Ba Q X,Zeng G Y,Xiong L Y,Zhou G Z.J Northeast Univ,1999;20:626 (巴启先,曾佳仪,熊良钺,周广智.东北大学学报. 1999;20: 626)
[20] Zou H,Wang J F,Liu L.Chin J Nonferrous Met,2004; 14:996 (邹辉,王敬丰,柳林.中国有色金属学报,2004:14:996)
[21] Chen H S,Inoue A,Masumoto T.J Mater Sci,1985;20: 2417
[22] Um C Y,Johnson F,Simone M,Barrow J,McHenry M E.J Appl Phys,2005;97:10F504
[23] Yao K F,Yu P,Zheng M X,Wang J,Zhang H T,Fang W, Sun J Z.Acta Metall Sin, 2000;36:630 (姚可夫,余鹏,郑明新,王俊,张华堂,方威,孙建周金属学报,2000;36:630)
[24] Yao K F,Wang J,Zheng M X,Yu P,Zhang H T.Sct Mater, 2001; 45:533
[25] Yao K F,Yu P,Wang J,Fang W,Zheng M X.Acta Metall Sin (Engl Lett),2001;14:341
[26] Yao K F,Yu P,Zheng M X.Tribology,2002;22:202 (姚可夫,余鹏,郑明新.摩擦学学报, 2002;22:202)
[27] Conrad H.Mater Sci Eng,2000;A287:227
[28] Conrad H.Mater Sci Eng,2000;A287:276L
[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[3] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[4] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[5] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[6] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[7] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[8] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[9] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[10] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[11] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[12] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[13] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[14] 薛飞, 米涛, 王美玲, 丁贤飞, 李相辉, 冯强. Ni对Co-Al-W基合金时效组织演变和γ′相溶解行为的影响*[J]. 金属学报, 2014, 50(7): 845-853.
[15] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.