Please wait a minute...
金属学报  2006, Vol. 42 Issue (8): 815-819     
  论文 本期目录 | 过刊浏览 |
应力和夹杂对车轮钢中氢鼓泡的影响
武明; 褚武扬;李金许; 姜波; 陈刚; 崔银会
北京科技大学材料物理系
EFFECT OF STRESS AND INCLUSION ON HYDROGEN BLISTERING
;;;;;
北京科技大学
引用本文:

武明; 褚武扬; 李金许; 姜波; 陈刚; 崔银会 . 应力和夹杂对车轮钢中氢鼓泡的影响[J]. 金属学报, 2006, 42(8): 815-819 .
, , , , , . EFFECT OF STRESS AND INCLUSION ON HYDROGEN BLISTERING[J]. Acta Metall Sin, 2006, 42(8): 815-819 .

全文: PDF(1189 KB)  
摘要: 车轮钢在恒应力下充氢表面出现氢鼓泡的临界电流和无应力试样相同, 恒应力下临界可扩散氢浓度Cσ*落在无应力试样的分散带内, t检验表明应力对C0*没有影响. 恒应力下发生氢致滞后断裂的门槛电流密度和门槛可扩散氢浓度分别为ith=3 mA/cm2和Cth=0.52×10-6, 远小于出现氢鼓泡的相应值ic=5 mA/cm2和C0*=1.18×10-6. 无应力时, 氢鼓泡并不择优沿夹杂产生; 但在恒应力下, 氢鼓泡择优沿长条状夹杂形核, 其临界可扩散氢浓度从1.18×10-6降为0.56×10-6.
关键词 氢鼓泡应力夹杂车轮钢白点    
Abstract:The effect of applied stress and inclusion on hydrogen blistering in wheel steel has been investigated. The results show that the critical current density for forming blistering during charging under sustained stress is the same with that of the sample without stress, and the critical diffusible hydrogen concentration for forming blistering under sustained stress,Cσ* is located within the scatter interval of C0* for the sample without stress. t test shows that there is no effect of the stress on C0*. However the threshold current density and diffusible hydrogen concentration for hydrogen-induced delayed fracture under sustained stress are ith=3mA/cm2 and Cth=0.52×10-6, respectively, which are smaller than the corresponding values for forming hydrogen blistering, i.e., ic=5mA/cm2 and C0*=1.18×10-6 . Hydrogen blistering do not preferentially form along the inclusions for the samples without stress, however, the blistering preferentially form along the lengthened inclusion under sustained stress, resulting in decreasing C0* from 1.18×10-6 for the samples without stress to 0.56×10-6 in the sample containing lengthen inclusion under sustained stress.
Key wordshydrogen blistering    stress    inclusion    wheel steel    flaking
收稿日期: 2005-10-26     
ZTFLH:  TG111.9  
[1]Chu W Y.Hydrogen Damage and Delayed Cracking.Beijing:Metallurgical Industry Press,1988:146(褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988:146)
[2]Smialowski M.Hydrogen in Steel.New York:Pergamon Press,1962:327
[3]Interrante C G.In:Interrante C G,Pressourye G M,eds.,Current Solution to Hydrogen Problems in Steels,Metals Park,OH:ASM,1982:2
[4]Steiner J E.In:Interrante C G,Pressourye G M,eds.,Current Solution to Hydrogen Problems in Steels,Metals Park,OH:ASM,1982:55
[5]Fruehan R J.Iron Steel Maker,1997;24:61
[6]Pressourye G M.In:Interrante C G,Pressourye G M,eds.,Current Solution to Hydrogen Problems in Steels,Metals Park,OH:ASM,1982:18
[7]Oriani R A,Hirth J P,Smialowski M.Hydrogen Degradation of Ferrous Alloys.Park Ridge,N J:Noyes Pub,1985:737
[8]Panagopoulos C N,El-Amoush A S,Agathocleous P E.Corros Sci,1998;40:1837
[9]Ren X C,Shan G B,Chu W Y,Su Y J,Gao K W,QiaoL J.Chin Sci Bull,2005;50:1962
[10]Ren X C,Chu W Y,Li J X,Qiao L J.Acta Metall Sin,2006;42:275 (任学冲,褚武扬,李金许,乔利杰.金属学报,2006;42:275)
[11]Chu W Y,Qiao L J,Chen Q Z,Gao K W.Fracture and Environment Fracture.Beijing:Science Press,2001:133 (褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京:科学出版社,2001:133)
[12]Chu W Y,Li J X,Huang C H,Wang Y B,Qiao L J.Corrosion,1999;55:892
[13]Ren X C,ChuW Y,Li J X,Qiao L J.Acta Metall Sin,2006;42:156 (任学冲,褚武扬,李金许,乔利杰.金属学报,2006;42:156)
[14]Peng X,Su Y J,Gao K W,Qiao L J,Chu W Y.Mater Lett,2004;58:2073
[15]Wu M,Ren X C,Chu W Y,Li J X,Qiao L J,Jiang B,Chen G,Cui Y H.Acta Metall Sin,2006;42,in press (武明,任学冲,褚武扬,李金许,乔利杰,江波,陈刚,崔银会.金属学报,2006;42,待发表)
[16]Spiegel M R,Schiller J,Srinivasan,R A.Schaum's Outline of Theory and Problems of Probability and Statistics.2nd ed,New York:McGraw-Hill Co,2000:171
[17]Timoshenko S,Gocdier J N.Theory of Elasticity.2nd ed,New York:McGraw-Hill Book Co,1951:375
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[6] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[12] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.